解:(Ⅰ)∵點(diǎn)(a
n+1,S
n)在直線2x+y-2=0上,∴2a
n+1 +S
n -2=0. ①
n≥2時(shí),2a
n+s
n-1-2=0. ②
①─②得 2a
n+1 -2a
n+a
n=0,∴
=
(n≥2).
再由a
1=1,可得 a
2=
.
∴{a
n}是首項(xiàng)為1,公比為
的等比數(shù)列,
∴a
n =
.
(Ⅱ)由(Ⅰ)可得 s
n=
=2-
.
若數(shù)列{S
n+λ•n+
}為等差數(shù)列,
則 s
1+λ+
,s
2+2λ+
,s
3+3λ+
成等差數(shù)列,
∴2(s
2+2λ+
)=(s
1+λ+
)+(s
3+3λ+
),解得 λ=2.
又λ=2時(shí),S
n+λ•n+
=2n+2,顯然 {2n+2}成等差數(shù)列,
故存在實(shí)數(shù)λ=2,使得數(shù)列 {S
n+λ•n+
}成等差數(shù)列.
分析:(Ⅰ)由已知條件可得 2a
n+1 +S
n -2=0,可得n≥2時(shí),2a
n+s
n-1-2=0,相減可得
=
(n≥2).由此可得{a
n}是首項(xiàng)為1,公比為
的等比數(shù)列,由此求得數(shù)列{a
n}的通項(xiàng)公式.
(Ⅱ)先求出s
n=2-
,若數(shù)列{S
n+λ•n+
}為等差數(shù)列,則由第二項(xiàng)的2倍等于第一項(xiàng)加上第三項(xiàng),求出λ=2,經(jīng)檢驗(yàn)λ=2時(shí),此數(shù)列的通項(xiàng)公式是關(guān)于n的一次函數(shù),故滿足數(shù)列為等差數(shù)列,從而得出結(jié)論.
點(diǎn)評(píng):本題主要考查等差關(guān)系的確定,根據(jù)數(shù)列的遞推關(guān)系求通項(xiàng),屬于中檔題.