曲線上的點(diǎn)到直線的最短距離是( )
A. | B. | C. | D.0 |
B
解析試題分析:
對曲線y=ln(2x-1)進(jìn)行求導(dǎo),令y′=2,解出這個(gè)點(diǎn),再根據(jù)點(diǎn)到直線的距離進(jìn)行求解;解:∵曲線y=ln(2x-1),∴y′= ,分析知直線2x-y+8=0與曲線y=ln(2x-1)相切的點(diǎn)到直線2x-y+8=0的距離最短, y′═=2,解得x=1,把x=1代入y=ln(2x-1),∴y=0,∴點(diǎn)(1,0)到直線2x-y+8=0的距離最短,∴d= 故答案為2,選B.
考點(diǎn):導(dǎo)數(shù)的幾何意義
點(diǎn)評:此題主要利用導(dǎo)數(shù)研究曲線上某點(diǎn)的切線方程,還考查點(diǎn)到直線的距離,此題是一道基礎(chǔ)題;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
在上可導(dǎo)的函數(shù),當(dāng)時(shí)取得極大值,當(dāng) 時(shí)取得極小值,則的取值范圍是( 。
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
已知可導(dǎo)函數(shù)的導(dǎo)函數(shù)為,且滿足:①,②
,記,則的大小順序?yàn)? )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
曲線f(x)=x㏑x在點(diǎn)x=1處的切線方程是( )
A.y=2x+2 | B.y=2x-2 | C.y=x-1 | D.y=x+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
從如圖所示的正方形OABC區(qū)域內(nèi)任取一個(gè)點(diǎn),則點(diǎn)M取自陰影部分的概率為
A. | B. | C. | D. |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com