設函數(shù)f(x)=ax2+bx+c(a≠0),曲線y=f(x)通過點(0,2a+3),且在點(-1,f(-1))處的切線垂直于y軸.
(1)用a分別表示b和c;
(2)當b•c取得最小值時,求函數(shù)g(x)=-f(x)•ex的單調(diào)區(qū)間.
分析:(1)把(0,2a+3)代入到f(x)的解析式中得到c與a的解析式,解出c;求出f'(x),因為在點(-1,f(-1))處的切線垂直于y軸,得到切線的斜率為0,即f′(-1)=0,代入導函數(shù)得到b與a的關系式,解出b即可.
(2)把第一問中的b與c代入bc中化簡可得bc是關于a的二次函數(shù),根據(jù)二次函數(shù)求最值的方法求出bc的最小值并求出此時的a、b和c的值,代入f(x)中得到函數(shù)的解析式,根據(jù)求導法則求出g(x)的導函數(shù),利用x的值分區(qū)間討論g′(x)的正負即可得到g(x)的增減區(qū)間.
解答:解:(1)由f(x)=ax2+bx+c得到f'(x)=2ax+b.
因為曲線y=f(x)通過點(0,2a+3),故f(0)=c=2a+3,
又曲線y=f(x)在(-1,f(-1))處的切線垂直于y軸,故f'(-1)=0,
即-2a+b=0,因此b=2a.
(2)由(1)得bc=2a(2a+3)=4(a+
3
4
2-
9
4
,
故當a=-
3
4
時,bc取得最小值-
9
4

此時有b=-
3
2
,c=
3
2

從而f(x)=-
3
4
x2-
3
2
x+
3
2
,f′(x)=-
3
2
x-
3
2
,g(x)=-f(x)ex=(
3
4
x2+
3
2
x-
3
2
)ex,
所以g′(x)=-f′(x)ex+(-f(x))ex=
3
4
(x2+4x)ex
令g'(x)=0,解得x1=0,x2=-4.
當x∈(-∞,-4)時,g'(x)>0,故g(x)在x∈(-∞,-4)上為增函數(shù);
當x∈(-4,0)時,g'(x)<0,故g(x)在x∈(-4,0)上為減函數(shù).
當x∈(0,+∞)時,g'(x)>0,故g(x)在x∈(0,+∞)上為增函數(shù).
由此可見,函數(shù)g(x)的單調(diào)遞增區(qū)間為(-∞,-4)和(0,+∞);單調(diào)遞增區(qū)間為(-4,0).
點評:本題主要考查了利用導數(shù)研究曲線上某點切線方程,以及利用導數(shù)研究函數(shù)的單調(diào)性,解題的關鍵是函數(shù)的導函數(shù)的求解,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax+
xx-1
(x>1),若a是從1,2,3三個數(shù)中任取一個數(shù),b是從2,3,4,5四個數(shù)中任取一個數(shù),求f(x)>b恒成立的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax+b的圖象經(jīng)過點(1,7),又其反函數(shù)的圖象經(jīng)過點(4,0),求函數(shù)的解析式,并求f(-2)、f(
12
)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=ax+bx-cx,其中a,b,c是△ABC的三條邊,且c>a,c>b,則“△ABC為鈍角三角形”是“?x∈(1,2),使f(x)=0”( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•楊浦區(qū)一模)(文)設函數(shù)f(x)=ax+1-2(a>1)的反函數(shù)為y=f-1(x),則f-1(-1)=
-1
-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)設函數(shù)f(x)=(a
x
-
1
x
)n
,其中n=3
π
sin(π+x)dx,a為如圖所示的程序框圖中輸出的結果,則f(x)的展開式中常數(shù)項是( 。
A、-
5
2
B、-160
C、160
D、20

查看答案和解析>>

同步練習冊答案