若函數(shù)y=f(x)同時具備以下三個性質(zhì):①f(x)是奇函數(shù);②f(x)的最小正周期為π;③在(
4
4
)
上f(x)為增函數(shù),則f(x)的解析式可以是(  )
分析:利用三角函數(shù)的性質(zhì),逐項判斷,得出正確選項.
解答:解:A,f(x)=-cos2x,是偶函數(shù).A錯.
B,f(x)=-sin2x,在(
4
,
4
)
上f(x)為減函數(shù),B錯.
C,f(x)不具有奇偶性,C錯
D,f(x)=sin2x,符合題意.
故選D
點評:本題考查三角函數(shù)的性質(zhì),應(yīng)準確、靈活、熟練應(yīng)用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•石景山區(qū)一模)若直角坐標平面內(nèi)的兩點P、Q滿足條件:
①P、Q都在函數(shù)y=f(x)的圖象上;
②P、Q關(guān)于原點對稱,則稱點對[P,Q]是函數(shù)y=f(x)的一對“友好點對”(點對[P,Q]與[Q,P]看作同一對“友好點對”),
已知函數(shù)f(x)=
log2x(x>0)
-x2-4x(x≤0)
,則此函數(shù)的“友好點對”有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直角坐標平面內(nèi)的兩個點P和Q滿足條件:①P和Q都在函數(shù)y=f(x)的圖象上;②P和Q關(guān)于原點對稱,則稱點對[P,Q]是函數(shù)y=f(x)的一對“友好點對”([P,Q]與[Q,P]看作同一對“友好點對”).已知函數(shù)f(x)=
log2x,x>0
-x2-4x,x≤0
,則此函數(shù)的“友好點對”有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直角坐標平面內(nèi)不同的兩點P、Q滿足條件:①P、Q都在函數(shù)f(x)=
log2x(x>0)
-x2-4x(x≤0)
y=f(x)的圖象上
②P,Q關(guān)于原點對稱,則稱點對[P,Q]是函數(shù)Y=f(x)的一對“友好點對”(注:點對[P,Q]與[Q,P]看作同一對“友好點對”).若函數(shù),則此函數(shù)的“友好點對”有( 。⿲Γ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標系中,若兩點P,Q滿足條件:
①P,Q都在函數(shù)y=f(x)的圖象上;
②P,Q兩點關(guān)于直線y=x對稱,則稱點對P,Q是函數(shù)y=f(x)的一對“和諧點對”
(注:點對{P,Q}與{Q,P}看作同一對“和諧點對”)
已知函數(shù)f(x)=
x2+3x+2(x≤0)
log2x(x>0)
,則此函數(shù)的“和諧點對”有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),f″(x)是f′(x)的導(dǎo)函數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.某同學(xué)經(jīng)研究發(fā)現(xiàn):任何一個三次函數(shù)都有“拐點”;任何一個三次函數(shù)都有對稱中心,且拐點就是對稱中心. 若f(x)=
1
3
x3-
1
2
x2+3x-
5
12
,請你根據(jù)這一發(fā)現(xiàn),求:
(1)函數(shù)f(x)=
1
3
x3-
1
2
x2+3x-
5
12
的對稱中心為
 

(2)f(
1
2014
)+f(
2
2014
)+…+f(
2013
2014
)
=
 

查看答案和解析>>

同步練習冊答案