【題目】已知二次函數(shù)滿(mǎn)足,且.
()求的解析式.
()若函數(shù)在區(qū)間上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
()若關(guān)于的方程有區(qū)間上有唯一實(shí)數(shù)根,求實(shí)數(shù)的取值范圍(相等的實(shí)數(shù)根算一個(gè)).
【答案】(1).
(2).
(3).
【解析】試題分析:(1)只要設(shè),代入已知條件即可求得;(2)由(1)知是二次函數(shù),其單調(diào)性與對(duì)稱(chēng)軸有關(guān),題意說(shuō)明其對(duì)稱(chēng)軸不在區(qū)間上;(3)關(guān)于的方程是二次方程,它在區(qū)間上有唯一實(shí)數(shù)根,可能是在上是兩個(gè)相等的實(shí)根,也可能是一根在此區(qū)間上,另一根在此區(qū)間外(注意區(qū)間端點(diǎn)的討論).
試題解析:(1)設(shè),代入,
得,對(duì)于恒成立,故,
又由,得,解得,
∴.
(2)因?yàn)?/span> ,
又函數(shù)在上是單調(diào)函數(shù),故或,
截得或.
故實(shí)數(shù)的取值范圍是.
(3)由方程得,
令,,
即要求函數(shù)在上有唯一的零點(diǎn),
①,則,代入原方程得或3,不合題意;
②若,則,代入原方程得或2,滿(mǎn)足提議,故成立;
③若△,則,代入原方程得,滿(mǎn)足提議,故成立;
④若且且時(shí),由得.
綜上,實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】海水受日月的引力,在一定的時(shí)候發(fā)生漲落的現(xiàn)象叫潮。一般地,早潮叫潮,晚潮叫汐。在通常情況下,船在漲潮時(shí)駛進(jìn)航道,靠近碼頭;卸貨后,在落潮時(shí)返回海洋.下面是某港口在某季節(jié)每天時(shí)間與水深(單位:米)的關(guān)系表:
時(shí)刻 | 0:00 | 3:00 | 6:00 | 9:00 | 12:00 | 15:00 | 18:00 | 21:00 | 24:00 |
水深 | 10.0 | 13.0 | 9.9 | 7.0 | 10.0 | 13.0 | 10.1 | 7.0 | 10.0 |
(1)請(qǐng)用一個(gè)函數(shù)來(lái)近似描述這個(gè)港口的水深y與時(shí)間t的函數(shù)關(guān)系;
(2)一般情況下,船舶航行時(shí),船底離海底的距離為5米或5米以上認(rèn)為是安全的(船舶停靠時(shí),船底只要不碰海底即可)。某船吃水深度(船底離地面的距離)為6.5米。
Ⅰ)如果該船是旅游船,1:00進(jìn)港希望在同一天內(nèi)安全出港,它至多能在港內(nèi)停留多長(zhǎng)時(shí)間(忽略進(jìn)出港所需時(shí)間)?
Ⅱ)如果該船是貨船,在2:00開(kāi)始卸貨,吃水深度以每小時(shí)0.5米的速度減少,由于臺(tái)風(fēng)等天氣原因該船必須在10:00之前離開(kāi)該港口,為了使卸下的貨物盡可能多而且能安全駛離該港口,那么該船在什么整點(diǎn)時(shí)刻必須停止卸貨(忽略出港所需時(shí)間)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分12分,(1)小問(wèn)7分,(2)小問(wèn)5分)
設(shè)函數(shù)
(1)若在處取得極值,確定的值,并求此時(shí)曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;
(2)若在上為減函數(shù),求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率e= ,右頂點(diǎn)、上頂點(diǎn)分別為A,B,直線(xiàn)AB被圓O:x2+y2=1截得的弦長(zhǎng)為
(1)求橢圓C的方程;
(2)設(shè)過(guò)點(diǎn)B且斜率為k的動(dòng)直線(xiàn)l與橢圓C的另一個(gè)交點(diǎn)為M, =λ( ),若點(diǎn)N在圓O上,求正實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義在上的偶函數(shù),且當(dāng)時(shí),.
(1)已畫(huà)出函數(shù)在軸左側(cè)的圖像,如圖所示,請(qǐng)補(bǔ)出完整函數(shù)的圖像,并根據(jù)圖像寫(xiě)出函數(shù)的增區(qū)間;
⑵寫(xiě)出函數(shù)的解析式和值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】利民中學(xué)為了了解該校高一年級(jí)學(xué)生的數(shù)學(xué)成績(jī),從高一年級(jí)期中考試成績(jī)中抽出100名學(xué)生的成績(jī),由成績(jī)得到如下的頻率分布直方圖.
根據(jù)以上頻率分布直方圖,回答下列問(wèn)題:
(1)求這100名學(xué)生成績(jī)的及格率;(大于等于60分為及格)
(2)試比較這100名學(xué)生的平均成績(jī)和中位數(shù)的大小.(精確到0.1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),函數(shù)與在處的切線(xiàn)互相垂直,求的值;
(2)若函數(shù)在定義域內(nèi)不單調(diào),求的取值范圍;
(3)是否存在正實(shí)數(shù),使得對(duì)任意正實(shí)數(shù)恒成立?若存在,求出滿(mǎn)足條件的實(shí)數(shù);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱柱ABC﹣A1B1C1的側(cè)棱垂直于底面,∠BAC=90°,AB= AC = AA1=2,M,N分別是A1B1,BC的中點(diǎn).
(1)證明:MN∥平面ACC1A1;
(2)求二面角M﹣AN﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖, 分別是橢圓的左、右焦點(diǎn), 是橢圓的頂點(diǎn), 是直線(xiàn)與橢圓的另一個(gè)交點(diǎn), .
(1)求橢圓的離心率;
(2)已知的面積為,求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com