13.在空間直角坐標(biāo)系0-xyz中,下列說法正確的是( 。
A.向量$\overrightarrow{AB}$的坐標(biāo)與點(diǎn)B坐標(biāo)相同
B.向量$\overrightarrow{AB}$的坐標(biāo)與點(diǎn)A坐標(biāo)相同
C.向量$\overrightarrow{AB}$的坐標(biāo)與向量$\overrightarrow{OB}$坐標(biāo)相同
D.向量$\overrightarrow{AB}$的坐標(biāo)與向量$\overrightarrow{OB}$-$\overrightarrow{OA}$坐標(biāo)相同

分析 由空間向量的坐標(biāo)運(yùn)算法則知$\overrightarrow{AB}$=$\overrightarrow{OB}-\overrightarrow{OA}$.

解答 解:由空間向量的坐標(biāo)運(yùn)算法則知:
$\overrightarrow{AB}$=$\overrightarrow{OB}-\overrightarrow{OA}$,
∴向量$\overrightarrow{AB}$的坐標(biāo)與向量$\overrightarrow{OB}$-$\overrightarrow{OA}$坐標(biāo)相同.
故選:D.

點(diǎn)評 本題考查空間向量坐標(biāo)運(yùn)算,是基礎(chǔ)題,解題時(shí)要注意向量坐標(biāo)運(yùn)算法則的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知等比數(shù)列{an},{bn}的公比分別為q1,q2,則q1=q2是{an+bn}為等比數(shù)列的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.拋物線${C_1}:y=\frac{1}{2p}{x^2}(p>0)$的焦點(diǎn)與雙曲線${C_2}:\frac{x^2}{8}-{y^2}=1$的右焦點(diǎn)的連線交C1于第一象限的點(diǎn)M.若C1在點(diǎn)M處的切線平行于C2的一條漸近線,則p=( 。
A.$\frac{{7\sqrt{2}}}{16}$B.$\frac{{7\sqrt{2}}}{8}$C.$\frac{{21\sqrt{2}}}{8}$D.$\frac{{21\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.1-2+4-8+…+(-1)n-1•2n-1等于$\frac{1}{3}[1-(-2)^{n}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如果把地球看作是一個(gè)球,規(guī)定在球面上,1′的圓心角對應(yīng)的弧長定義為1海里,若地球半徑是6376.3千米,計(jì)算1海里合多少千米?(精確到0.0001).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)f(x)=sin2($\frac{π+2x}{4}$)•4sinx+(cosx+sinx)•(cosx-sinx).
(1)已知常數(shù)ω>0,若y=f(ωx)在區(qū)間[-$\frac{π}{2}$,$\frac{2π}{3}$]上是增函數(shù),求ω的取值范圍;
(2)設(shè)集合A={x|$\frac{π}{6}$≤x≤$\frac{2}{3}$π},B={x|f(x)-m<2},若A⊆B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在非直角三角形ABC中,若∠A+∠C=2∠B,且tanAtanC=2+$\sqrt{3}$,求△ABC的三內(nèi)角大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知二次函數(shù)f(x)=tx2+(t-1)x-1.
(1)若對?x∈R,f(x)≤0恒成立,求f(x)的解析式;
(2)若t>0,f(x)在[0,1]的最小值是-1,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知集合M={x|x2-8x+15<0,x∈R},集合P={|z||z=3a+(5-4a)i,a∈R},若M∩P=P,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案