【題目】已知函數(shù), .

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若關(guān)于的方程有實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

【答案】(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2) .

【解析】試題分析:

(1)結(jié)合函數(shù)的解析式可得 ,結(jié)合導(dǎo)函數(shù)與原函數(shù)的單調(diào)性的關(guān)系可得函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

(2)原問題等價(jià)于方程有實(shí)數(shù)根,構(gòu)造函數(shù),利用導(dǎo)函數(shù)研究函數(shù)存在零點(diǎn)的充要條件可得:當(dāng)時(shí),方程有實(shí)數(shù)根.

試題解析:

1)依題意,得, .

,即,解得;

,即,解得

故函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

2)由題得, .

依題意,方程有實(shí)數(shù)根,

即函數(shù)存在零點(diǎn),

,

,得.

當(dāng)時(shí), ,即函數(shù)在區(qū)間上單調(diào)遞減,

, ,

所以函數(shù)存在零點(diǎn);

當(dāng)時(shí), , 的變化情況如表:

極小值

所以為函數(shù)的極小值,也是最小值.

當(dāng),即時(shí),函數(shù)沒有零點(diǎn);

當(dāng),即時(shí),注意到,

所以函數(shù)存在零點(diǎn).

綜上所述,當(dāng)時(shí),方程有實(shí)數(shù)根.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,D是AC的中點(diǎn),EF∥DB.
(1)已知AB=BC,AF=CF,求證:AC⊥平面BEF;
(2)已知G、H分別是EC和FB的中點(diǎn),求證:GH∥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示.
(1)求函數(shù)的解析式;
(2)設(shè) π<x< π,且方程f(x)=m有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍和這兩個(gè)根的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,角所對(duì)的邊分別是,已知.

(1)求角的大。

(2)若,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面內(nèi)有三個(gè)向量 ,其中∠AOB=60°,∠AOC=30°,且 , ,若 ,則λ+μ=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知公差不為零的等差數(shù)列{an}中,a1=1且a1 , a3 , a9成等比數(shù)列, (Ⅰ)求數(shù)列{an}的通項(xiàng)公式
(Ⅱ)設(shè)bn=n2 求數(shù)列[bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域?yàn)?/span>,且對(duì)任意實(shí)數(shù)恒有)成立.

(1)求函數(shù)的解析式;

(2)討論上的單調(diào)性,并用定義加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是奇函數(shù)并且是R上的單調(diào)函數(shù),若函數(shù)y=f(2x2+1)+f(λ﹣x)只有一個(gè)零點(diǎn),則實(shí)數(shù)λ的值是(
A.
B.
C.﹣
D.﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我市為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),面向全市征召義務(wù)宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機(jī)抽取100名按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.

(1)分別求第3,4,5組的頻率.

(2)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場(chǎng)宣傳活動(dòng),應(yīng)從第3,4,5組各抽取多少名志愿者?

(3)在(2)的條件下,我市決定在這6名志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗(yàn),求第4組至少有一名志愿者被抽中的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案