【題目】已知函數(shù), .
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的方程有實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
【答案】(1)單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為;(2) .
【解析】試題分析:
(1)結(jié)合函數(shù)的解析式可得, ,結(jié)合導(dǎo)函數(shù)與原函數(shù)的單調(diào)性的關(guān)系可得函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(2)原問題等價(jià)于方程有實(shí)數(shù)根,構(gòu)造函數(shù),利用導(dǎo)函數(shù)研究函數(shù)存在零點(diǎn)的充要條件可得:當(dāng)時(shí),方程有實(shí)數(shù)根.
試題解析:
(1)依題意,得, .
令,即,解得;
令,即,解得,
故函數(shù)的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.
(2)由題得, .
依題意,方程有實(shí)數(shù)根,
即函數(shù)存在零點(diǎn),
又,
令,得.
當(dāng)時(shí), ,即函數(shù)在區(qū)間上單調(diào)遞減,
而, ,
所以函數(shù)存在零點(diǎn);
當(dāng)時(shí), , 隨的變化情況如表:
|
|
|
|
| 極小值 |
所以為函數(shù)的極小值,也是最小值.
當(dāng),即時(shí),函數(shù)沒有零點(diǎn);
當(dāng),即時(shí),注意到, ,
所以函數(shù)存在零點(diǎn).
綜上所述,當(dāng)時(shí),方程有實(shí)數(shù)根.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,D是AC的中點(diǎn),EF∥DB.
(1)已知AB=BC,AF=CF,求證:AC⊥平面BEF;
(2)已知G、H分別是EC和FB的中點(diǎn),求證:GH∥平面ABC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示.
(1)求函數(shù)的解析式;
(2)設(shè) π<x< π,且方程f(x)=m有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍和這兩個(gè)根的和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知公差不為零的等差數(shù)列{an}中,a1=1且a1 , a3 , a9成等比數(shù)列, (Ⅰ)求數(shù)列{an}的通項(xiàng)公式
(Ⅱ)設(shè)bn=n2 求數(shù)列[bn}的前n項(xiàng)和Sn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>,且對(duì)任意實(shí)數(shù)恒有(且)成立.
(1)求函數(shù)的解析式;
(2)討論在上的單調(diào)性,并用定義加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是奇函數(shù)并且是R上的單調(diào)函數(shù),若函數(shù)y=f(2x2+1)+f(λ﹣x)只有一個(gè)零點(diǎn),則實(shí)數(shù)λ的值是( )
A.
B.
C.﹣
D.﹣
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我市為增強(qiáng)市民的環(huán)境保護(hù)意識(shí),面向全市征召義務(wù)宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機(jī)抽取100名按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)分別求第3,4,5組的頻率.
(2)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場(chǎng)宣傳活動(dòng),應(yīng)從第3,4,5組各抽取多少名志愿者?
(3)在(2)的條件下,我市決定在這6名志愿者中隨機(jī)抽取2名志愿者介紹宣傳經(jīng)驗(yàn),求第4組至少有一名志愿者被抽中的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com