【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示.
(1)求函數(shù)的解析式;
(2)設(shè) π<x< π,且方程f(x)=m有兩個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍和這兩個(gè)根的和.

【答案】
(1)解:由函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象,可得A=2,

根據(jù) = = ,求得ω=2.

再根據(jù)五點(diǎn)法作圖可得2× +φ= ,∴φ= ,f(x)=2sin(2x+ ).


(2)解:如圖所示,在同一坐標(biāo)系中畫出y=2sin(2x+ )和直線y=m(m∈R)的圖象,

由圖可知,當(dāng)﹣2<m<0或 <m<2時(shí),直線y=m與曲線有兩個(gè)不同的交點(diǎn),即原方程有兩個(gè)不同的實(shí)數(shù)根.

∴m的取值范圍為:﹣2<m<0或 <m<2;

當(dāng)﹣2<m<0時(shí),兩根和為 ; 當(dāng) <m<2時(shí),兩根和為


【解析】(1)由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,可得函數(shù)的解析式.(2)在同一坐標(biāo)系中畫出y=2sin(2x+ )和直線y=m(m∈R)的圖象,結(jié)合正弦函數(shù)的圖象的特征,數(shù)形結(jié)合求得實(shí)數(shù)m的取值范圍和這兩個(gè)根的和.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若函數(shù)在區(qū)間上不單調(diào),求的取值范圍.

(2)令,是否存在實(shí)數(shù),對(duì)任意,存在,使得成立?若存在,求的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)某種設(shè)備使用的年限x(年)與所支出的維修費(fèi)用y(元)有以下統(tǒng)計(jì)資料:

參考數(shù)據(jù): .參考公式:

如果由資料知y對(duì)x呈線性相關(guān)關(guān)系.試求:

1 2)線性回歸方程

3)估計(jì)使用10年時(shí),維修費(fèi)用是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等比數(shù)列{an}的前n項(xiàng)和為Sn , 已知對(duì)任意的n∈N+ , 點(diǎn)(n,Sn)均在函數(shù)y=bx+r(b>0且b≠1,b,r均為常數(shù)的圖象上.
(1)求r的值.
(2)當(dāng)b=2時(shí),記bn=2(log2an+1)(n∈N+),證明:對(duì)任意的n∈N+,不等式成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中實(shí)數(shù)為常數(shù),為自然對(duì)數(shù)的底數(shù).

(1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),解關(guān)于的不等式;

(3)當(dāng)時(shí),如果函數(shù)不存在極值點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)). 

(1)若在其定義域內(nèi)單調(diào)遞增,求實(shí)數(shù)的取值范圍;

(2)若,且有兩個(gè)極值點(diǎn), ),求取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=Asin(ωx+φ)在一個(gè)周期內(nèi)的圖象如圖,此函數(shù)的解析式為(
A.y=2sin(2x+
B.y=2sin(2x+ )??
C.y=2sin(
D.y=2sin(2x﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), .

(1)求函數(shù)的單調(diào)區(qū)間;

(2)若關(guān)于的方程有實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1)關(guān)于的不等式的解集不是空集,求的取值范圍;

(2)設(shè),,,且,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案