解答:解:(1)方程|f(x)|=g(x),即|x
2-1|=a|x-1|,變形得|x-1|(|x+1|-a)=0,
顯然,x=1已是該方程的根,從而要使原方程只有一解,即要求方程|x+1|=a有且僅有一個等于1的解或無解,
作出函數(shù)y=|x+1|的圖象如圖所示:
結(jié)合圖形得a<0.
(2)不等式f(x)≥g(x)對x∈R恒成立,即(x
2-1)≥a|x-1|(*)對x∈R恒成立,
①當x=1時,(*)顯然成立,此時a∈R;
②當x≠1時,(*)可變形為 a≤
,令 φ(x)=
=
,
∵當x>1時,φ(x)>2,當x<1時,φ(x)>-2,
∴φ(x)>-2,故此時a≤-2.
綜合①②,得所求實數(shù)a的取值范圍是a≤-2.
(3)∵h(x)=|f(x)|+g(x)=|x
2-1|+a|x-1|=
| x2+ax-a-1,x≥1 | -x2-ax+a+1,-1≤x<1 | x2-ax+a-1,x<-1 |
| |
,
選取區(qū)間[0,+∞)為實數(shù)a的取值范圍,則
①當
>1即a>2時,可知h(x)在[-2,1]上遞減,在[1,2]上遞增,
且h(-2)=3a+3,h(2)=a+3,經(jīng)比較,此時h(x)在[-2,2]上的最大值為3a+3;
②當0
≤≤1即0≤a≤2時,可知,h(x)在[-2,-1],[-
,1]上遞減,在[-1,-
],[1,2]上遞增,
且h(-2)=3a+3,h(2)=a+3,h(-
)=
+a+1,
經(jīng)比較,知此時h(x)在[-2,2]上的最大值為3a+3.
選區(qū)間[-3,0]為實數(shù)a的取值范圍,則
①當-1
≤<0即-2≤a<0時,可知h(x)在[-2,-1],[-
,1]上遞減,在[-1,-
],[1,2]上遞增,
且h(-2)=3a+3,h(2)=a+3,h(-
)=
+a+1,
經(jīng)比較,知此時h(x)在[-2,2]上的最大值為a+3;
②當-
≤
<-1即-3≤a<-2時,可知h(x)在[-2,
],[1,-
]上遞減,在[
,1],[-
,2]上遞增,
且h(-2)=3a+3<0,h(2)=a+3≥0,
經(jīng)比較,知此時h(x)在[-2,2]上的最大值為a+3,
綜上所述,當-3≤a<0時,h(x)在[-2,2]上的最大值為a+3.
選取區(qū)間(-∞,-3)為實數(shù)a的取值范圍,
則
<-
,可知h(x)在[-2,1]上遞減,在[1,2]上遞增,
故此時h(x)在[-2,2]上的最大值為h(1)=0,
綜上所述,當a<-3時,h(x)在[-2,2]上的最大值為0..