1.復(fù)數(shù)z=(2+i)i的虛部是( 。
A.-2B.2C.2iD.-2i

分析 直接利用復(fù)數(shù)代數(shù)形式的乘法運(yùn)算化簡(jiǎn)得答案.

解答 解:∵z=(2+i)i=-1+2i,
∴復(fù)數(shù)z=(2+i)i的虛部是2.
故選:B.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.不等式組$\left\{\begin{array}{l}{y≤x}\\{y≥-x}\\{y≥2x-4}\end{array}\right.$表示的平面區(qū)域?yàn)镸,x2+y2≤1表示的平面區(qū)域?yàn)镹,現(xiàn)隨機(jī)向區(qū)域M內(nèi)拋一粒豆子,則豆子落在區(qū)域N內(nèi)的概率為$\frac{3π}{64}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)$f(x)=\frac{x+1}{e^x}$,$g(x)=\frac{alnx}{x}$,(a>0).若對(duì)任意實(shí)數(shù)x1,都存在正數(shù)x2,使得g(x2)=f(x1)成立,則實(shí)數(shù)a的取值范圍是[e,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S7=21,S17=34,則S27=( 。
A.27B.-27C.0D.37

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知a∈R,解關(guān)于x的不等式(a-1)x2+(2a+3)x+a+2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)α:1≤x<4,β:x≤m,若α是β的充分條件,則實(shí)數(shù)m的取值范圍是[4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.AD,BE分別是三角形ABC的中線,若AD=BE=2,且$\overrightarrow{AD}$、$\overrightarrow{EB}$的夾角為$\frac{2π}{3}$,則$\overrightarrow{AB}$•$\overrightarrow{AC}$=(  )
A.$\frac{8}{9}$B.$\frac{4}{9}$C.$\frac{8}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知雙曲線$\frac{{x}^{2}}{4}$-y2=1,過其右焦點(diǎn)F作直線l與雙曲線的右支交于點(diǎn)A、B,求FA•FB的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若a,b∈R且ab=1,則下列不等式恒成立的是( 。
A.a+b≥2B.a2+b2>2C.$\frac{a}$+$\frac{a}$≥2D.$\frac{1}{a}$+$\frac{1}$≥2

查看答案和解析>>

同步練習(xí)冊(cè)答案