設(shè)a
n=
sin
,S
n=a
1+a
2+…+a
n,在S
1,S
2,…S
100中,正數(shù)的個數(shù)是( 。
由于f(n)=sin
的周期T=50
由正弦函數(shù)性質(zhì)可知,a
1,a
2,…,a
24>0,a
25=0,a
26,a
27,…,a
49<0,a
50=0
且sin
=-sin,sin
=-sin…但是f(n)=
單調(diào)遞減
a
26…a
49都為負數(shù),但是|a
26|<a
1,|a
27|<a
2,…,|a
49|<a
24∴S
1,S
2,…,S
25中都為正,而S
26,S
27,…,S
50都為正
同理S
1,S
2,…,s
75都為正,S
1,S
2,…,s
75,…,s
100都為正,
故選D
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知Sn為數(shù)列{an}的前n項之和,a2=1,對任意的正整數(shù)n,都有Sn-2=p(an-2),其中p為常數(shù),且p≠1.
(1)求p的值;(2)求Sn.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知等差數(shù)列{an}滿足:a10=1,S20=0.
(1)求數(shù)列{|an|}的前20項的和;
(2)若數(shù)列{bn}滿足:log2bn=an+10,求數(shù)列{bn}的前n項和.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
等差數(shù)列{a
n}中,a
1=3,公差d=2,S
n為前n項和,求
++…+.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知等差數(shù)列{an}的前n項和是Sn=2n2-25n,試求數(shù)列{|an|}的前10項的和.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知數(shù)列{an}滿足Sn=n2an(n∈N*),其中Sn是{an}的前n項和,且a1=1,求
(1)求an的表達式;
(2)求Sn.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設(shè)數(shù)列{a
n}的前n項和為
Sn=2an-2n(Ⅰ)求a
1,a
2(Ⅱ)設(shè)c
n=a
n+1-2a
n,證明:數(shù)列{c
n}是等比數(shù)列
(Ⅲ)求數(shù)列
{}的前n項和為T
n.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知等差數(shù)列{a
n},公差d>0,前n項和為S
n,S
3=6,且滿足a
3-a
1,2a
2,a
8成等比數(shù)列.
(Ⅰ)求{a
n}的通項公式;
(Ⅱ)設(shè)b
n=
,求數(shù)列{b
n}的前n項和T
n的值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
數(shù)列
的通項公式為
,其前
項和為
,則
的值為 ( )
查看答案和解析>>