【題目】已知函數(shù).

1)討論的單調(diào)性;

2)若,記的極小值為,證明:.

【答案】1)當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),遞增區(qū)間為,遞減區(qū)間;當(dāng)時(shí),遞增區(qū)間,遞減區(qū)間 2)證明見(jiàn)解析.

【解析】

1)求得函數(shù)的導(dǎo)數(shù),分類(lèi)討論,即可求解函數(shù)的單調(diào)區(qū)間;

2)由(1)可知,取得,把,轉(zhuǎn)化為

設(shè),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,即可求解.

1)由題意,函數(shù),

①當(dāng)時(shí),,此時(shí)函數(shù)單調(diào)遞增;

②當(dāng)時(shí),令,即,解得,

,即,解得,

所以函數(shù)單調(diào)遞增,在上單調(diào)遞減;

③當(dāng)時(shí),令,即,解得,

,即,解得

所以函數(shù)單調(diào)遞增,在上單調(diào)遞減,

綜上可得:

當(dāng)時(shí),函數(shù)單調(diào)遞增;當(dāng)時(shí),函數(shù)遞增區(qū)間為,遞減區(qū)間;當(dāng)時(shí),函數(shù)遞增區(qū)間,遞減區(qū)間.

2)由(1)可知,當(dāng)時(shí),單調(diào)遞增,在上單調(diào)遞減,所以當(dāng)時(shí),函數(shù)取得極小值,

極小值為

要證:,只需證:,只需證:,

設(shè),則

,即,解得,

,即,解得,

所以函數(shù)在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,

所以當(dāng)時(shí),取得最大值,最大值為

即當(dāng)時(shí),,即,

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,原點(diǎn)為,橢圓的動(dòng)弦過(guò)焦點(diǎn)且不垂直于坐標(biāo)軸,弦的中點(diǎn)為,過(guò)且垂直于線(xiàn)段的直線(xiàn)交射線(xiàn)于點(diǎn)

(1)證明:點(diǎn)在定直線(xiàn)上;

(2)當(dāng)最大時(shí),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,已知直線(xiàn)的極坐標(biāo)方程為,曲線(xiàn)的參數(shù)方程為為參數(shù)).

1)若直線(xiàn)平行于直線(xiàn),且與曲線(xiàn)只有一個(gè)公共點(diǎn),求直線(xiàn)的方程;

2)若直線(xiàn)與曲線(xiàn)交于兩點(diǎn),,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的正半軸重合,且長(zhǎng)度單位相同;曲線(xiàn) 的方程是,直線(xiàn)的參數(shù)方程為為參數(shù),),設(shè), 直線(xiàn)與曲線(xiàn)交于 兩點(diǎn).

(1)當(dāng)時(shí),求的長(zhǎng)度;

(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,設(shè)曲線(xiàn)在點(diǎn)處的切線(xiàn)與圓相切.

1)求函數(shù)的單調(diào)區(qū)間;

2)求函數(shù)上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中常數(shù)

1)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間.

2)設(shè)定義在上的函數(shù)在點(diǎn)處的切線(xiàn)方程為.當(dāng)時(shí),若內(nèi)恒成立,則稱(chēng)為函數(shù)類(lèi)對(duì)稱(chēng)點(diǎn).當(dāng)時(shí),是否存在類(lèi)對(duì)稱(chēng)點(diǎn)?若存在,請(qǐng)求出一個(gè)類(lèi)對(duì)稱(chēng)點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某種氣墊船的最大航速是海里小時(shí),船每小時(shí)使用的燃料費(fèi)用和船速的平方成正比.若船速為海里小時(shí),則船每小時(shí)的燃料費(fèi)用為元,其余費(fèi)用(不論船速為多少)都是每小時(shí)元。甲乙兩地相距海里,船從甲地勻速航行到乙地.

(1)試把船從甲地到乙地所需的總費(fèi)用,表示為船速(海里小時(shí))的函數(shù),并指出函數(shù)的定義域;

(2)當(dāng)船速為每小時(shí)多少海里時(shí),船從甲地到乙地所需的總費(fèi)用最少?最少費(fèi)用為多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)、為雙曲線(xiàn)的左、右焦點(diǎn),過(guò)作垂直于軸的直線(xiàn),在軸上方交雙曲線(xiàn)于點(diǎn),且,圓的方程是.

1)求雙曲線(xiàn)的方程;

2)過(guò)雙曲線(xiàn)上任意一點(diǎn)作該雙曲線(xiàn)兩條漸近線(xiàn)的垂線(xiàn),垂足分別為、,求的值;

3)過(guò)圓上任意一點(diǎn)作圓的切線(xiàn)交雙曲線(xiàn)、兩點(diǎn),中點(diǎn)為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,為了測(cè)量A、B處島嶼的距離,小海在D處觀(guān)測(cè),A、B分別在D處的北偏西15°、北偏東45°方向,再往正東方向行駛20海里至C處,觀(guān)測(cè)BC處的正北方向,AC處的北偏西45°方向,則A、B兩島嶼的距高為___________海里.

查看答案和解析>>

同步練習(xí)冊(cè)答案