【題目】已知函數(shù),為的導(dǎo)函數(shù).
(1)證明:在定義域上存在唯一的極大值點(diǎn);
(2)若存在,使,證明:.
【答案】(1)見解析;(2)見解析.
【解析】
(1)對函數(shù)求導(dǎo)得,當(dāng)時(shí), ;當(dāng)時(shí),,所以在上遞減,又因?yàn)?/span>,,判斷出單調(diào)性,即可證明在定義域上存在唯一的極大值點(diǎn).
(2)假設(shè)存在,使,代入函數(shù)得,整理得.設(shè)新函數(shù),求導(dǎo)結(jié)果大于,在上遞增,再設(shè),則,即,,整理可得,根據(jù)對數(shù)均值不等式得出.
(1),
當(dāng)時(shí),,,,
“”不能同時(shí)取到,所以;
當(dāng)時(shí),,所以在上遞減,
因?yàn)?/span>,,
所以在定義域存在唯一,使且;
當(dāng)時(shí),;當(dāng)時(shí),,
所以是在定義域上的唯一極值點(diǎn)且是極大值點(diǎn).
(2)存在,使,即,
得.
設(shè),則,在上遞增,
不妨設(shè),則,即,,
所以,得,
根據(jù)對數(shù)均值不等式,可得,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】高三年級某班50名學(xué)生期中考試數(shù)學(xué)成績的頻率分布直方圖如圖所示,成績分組區(qū)間為:.其中a,b,c成等差數(shù)列且.物理成績統(tǒng)計(jì)如表.(說明:數(shù)學(xué)滿分150分,物理滿分100分)
分組 | |||||
頻數(shù) | 6 | 9 | 20 | 10 | 5 |
(1)根據(jù)頻率分布直方圖,請估計(jì)數(shù)學(xué)成績的平均分;
(2)根據(jù)物理成績統(tǒng)計(jì)表,請估計(jì)物理成績的中位數(shù);
(3)若數(shù)學(xué)成績不低于140分的為“優(yōu)”,物理成績不低于90分的為“優(yōu)”,已知本班中至少有一個(gè)“優(yōu)”同學(xué)總數(shù)為6人,從此6人中隨機(jī)抽取3人,記X為抽到兩個(gè)“優(yōu)”的學(xué)生人數(shù),求X的分布列和期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱的側(cè)面是正方形,平面平面,,,點(diǎn)在上,,是的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)判斷平面與平面是否垂直,直接寫出結(jié)論,不必說明理由;
(Ⅲ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動圓和定圓外切,和定直線相切.
(1)求該動圓圓心的軌跡的方程;
(2)過點(diǎn)的直線與交于兩點(diǎn),在曲線上存在一點(diǎn),使得為定值,求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“干支紀(jì)年法”是中國歷法上自古以來就一直使用的紀(jì)年方法,甲、乙、丙、丁、戊、己、庚、辛、壬、癸被稱為“十天干”,子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥叫做“十二地支”.“天干”以“甲”字開始,“地支”以“子”字開始,兩者按照干支順序相配,構(gòu)成了“干支紀(jì)年法”,其相配順序?yàn)椋杭鬃、乙丑、丙?/span>癸酉、甲戌、乙亥、丙子癸未、甲申、乙酉、丙戌癸巳癸亥,60為一個(gè)周期,周而復(fù)始,循環(huán)記錄.按照“干支紀(jì)年法”,中華人民共和國成立的那年為己丑年,則2013年為( )
A.甲巳年B.壬辰年C.癸巳年D.辛卯年
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】今年由于豬肉漲價(jià)太多,更多市民選擇購買雞肉、鴨肉、魚肉等其它肉類.某天在市場中隨機(jī)抽出100名市民調(diào)查,其中不買豬肉的人有30位,買了肉的人有90位,買豬肉且買其它肉的人共30位,則這一天該市只買豬肉的人數(shù)與全市人數(shù)的比值的估計(jì)值為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)g(x)=,f(x)=g'(x)-(a是常數(shù)).若對a∈R,函數(shù)h(x)=kx(k是常數(shù))的圖象與曲線y=f(x)總相切于一個(gè)定點(diǎn).
(1)求k的值;
(2)若對∈(0,+∞),[f()-h()][f()-h()]>0,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系.已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為(,為參數(shù))
(1)求曲線的直角坐標(biāo)方程;
(2)設(shè)直線與曲線交于、兩點(diǎn),點(diǎn)的直角坐標(biāo)為,若,求直線的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直四棱柱中,底面為等腰梯形,,,且為棱中點(diǎn),為棱中點(diǎn).
(1)證明:平面;
(2)求銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com