【題目】函數(shù)的一段圖象如圖所示.
(1)求函數(shù)的解析式;
(2)將函數(shù)的圖象向右平移個(gè)單位,得到的圖象,求直線與
函數(shù)的圖象在內(nèi)所有交點(diǎn)的坐標(biāo).
【答案】(1);(2).
【解析】【試題分析】(1)依據(jù)題設(shè)中提供的函數(shù)圖像,分析探求出函數(shù)解析式中的參數(shù)的值;(2)借助題設(shè)條件建立方程組分析探求:
(1)由圖知A=2,T=π,于是ω==2,
將y=2sin 2x的圖象向左平移,得y=2sin(2x+φ)的圖象.
于是φ=2·=,
∴f(x)=2sin.
(2)依題意得
g(x)=2sin=2sin. 故y=g(x)=2sin. 由得sin=.
∴2x-=+2kπ或2x-=+2kπ(k∈Z),
∴x=+kπ或x=+kπ(k∈Z). ∵x∈(0,π),
∴x=或x=. ∴交點(diǎn)坐標(biāo)為,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形為正方形,,,,,,為的中點(diǎn).
(1)求證:平面;
(2)在線段上是否存在一點(diǎn),使得二面角的大小為?若存在,求出的長;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)函數(shù)在點(diǎn)處的切線方程為,求函數(shù)的解析式;
(2)在(1)的條件下,若是函數(shù)的零點(diǎn),且,求的值;
(3)當(dāng)時(shí),函數(shù)有兩個(gè)零點(diǎn),且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某蛋糕店每天制作生日蛋糕若干個(gè),每個(gè)生日蛋糕的成本為50元,然后以每個(gè)100元的價(jià)格出售,如果當(dāng)天賣不完,剩下的蛋糕作垃圾處理.現(xiàn)需決策此蛋糕店每天應(yīng)該制作幾個(gè)生日蛋糕,為此搜集并整理了100天生日蛋糕的日需求量(單位:個(gè)),得到如圖所示的柱狀圖,以100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率.
(1)若蛋糕店一天制作17個(gè)生日蛋糕,
①求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:個(gè),)的函數(shù)解析式;
②在當(dāng)天的利潤不低于750元的條件下,求當(dāng)天需求量不低于18個(gè)的概率.
(2)若蛋糕店計(jì)劃一天制作16個(gè)或17個(gè)生日蛋糕,請(qǐng)你以蛋糕店一天利潤的期望值為決定依據(jù),判斷應(yīng)該制作16個(gè)是17個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若某產(chǎn)品的直徑長與標(biāo)準(zhǔn)值的差的絕對(duì)值不超過1mm時(shí),則視為合格品,否則視為不合格品.在近期一次產(chǎn)品抽樣檢查中,從某廠生產(chǎn)的此種產(chǎn)品中,隨機(jī)抽取5000件進(jìn)行檢測(cè),結(jié)果發(fā)現(xiàn)有50件不合格品.計(jì)算這50件不合格品的直徑長與標(biāo)準(zhǔn)值的差(單位:mm),將所得數(shù)據(jù)分組,得到如下頻率分布表:
分 組 | 頻 數(shù) | 頻 率 |
[-3,-2) | 0.10 | |
[-2,-1) | 8 | |
(1,2] | 0.50 | |
(2,3] | 10 | |
(3,4] | ||
合計(jì) | 50 | 1.00 |
(1)將上面表格中缺少的數(shù)據(jù)填充完整.
(2)估計(jì)該廠生產(chǎn)的此種產(chǎn)品中,不合格品的直徑長與標(biāo)準(zhǔn)值的差落在區(qū)間(1,3]內(nèi)的概率.
(3)現(xiàn)對(duì)該廠這種產(chǎn)品的某個(gè)批次進(jìn)行檢查,結(jié)果發(fā)現(xiàn)有20件不合格品.據(jù)此估算這批產(chǎn)品中的合格品的件數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線上有一個(gè)動(dòng)點(diǎn),過點(diǎn)作直線垂直于軸,動(dòng)點(diǎn)在上,且滿足(為坐標(biāo)原點(diǎn)),記點(diǎn)的軌跡為.
(I)求曲線的方程;
(II)若直線是曲線的一條切線,當(dāng)點(diǎn)到直線的距離最短時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在邊長為1的等邊三角形中,分別是,上的點(diǎn),,是的中點(diǎn),與交于點(diǎn),沿折起,得到如圖2所示的三棱錐,其中.
(1)求證:平面平面
(2)若為,上的中點(diǎn),為中點(diǎn),求異面直線與所成角的余弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓和定點(diǎn),由圓外一點(diǎn)向圓引切線,切點(diǎn)為,且滿足.
(1)求實(shí)數(shù)間滿足的等量關(guān)系;
(2)若以為圓心的圓與圓有公共點(diǎn),試求圓的半徑最小時(shí)圓的方程;
(3)當(dāng)點(diǎn)的位置發(fā)生變化時(shí),直線是否過定點(diǎn),如果是,求出定點(diǎn)坐標(biāo),如果不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓經(jīng)過點(diǎn),,且它的圓心在直線上.
(Ⅰ)求圓的方程;
(Ⅱ)求圓關(guān)于直線對(duì)稱的圓的方程。
(Ⅲ)若點(diǎn)為圓上任意一點(diǎn),且點(diǎn),求線段的中點(diǎn)的軌跡方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com