6.已知:二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(0,4),頂點(diǎn)在x軸上,且對(duì)稱軸在y軸的右側(cè).設(shè)直線y=x與二次函數(shù)的圖象自左向右分別交于P(x1,y1),Q(x2,y2)兩點(diǎn),OP:PQ=1:3.
(1)求二次函數(shù)的解析式;
(2)求△PAQ的面積.

分析 (1)用b表示出a,聯(lián)立方程組消去y,則$\frac{{x}_{1}}{{x}_{2}}$=$\frac{OP}{OQ}=\frac{1}{4}$,從而得出a的值;
(2)求出P、Q的坐標(biāo)計(jì)算AQ,P到AQ的距離即可得出三角形的面積.

解答 解:(1)∵二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點(diǎn)A(0,4),頂點(diǎn)在x軸上,
∴c=4,b2-4ac=b2-16a=0,∴a=$\frac{^{2}}{16}$>0,
又二次函數(shù)的對(duì)稱軸在y軸右側(cè),∴-$\frac{2a}$>0,∴b=-4$\sqrt{a}$.
∴y=ax2-4$\sqrt{a}$x+4,
聯(lián)立方程組$\left\{\begin{array}{l}{y=x}\\{y=a{x}^{2}-4\sqrt{a}x+4}\end{array}\right.$得ax2-(4$\sqrt{a}$+1)x+4=0,
∴x1=$\frac{4\sqrt{a}+1-\sqrt{8\sqrt{a}+1}}{2a}$,x2=$\frac{4\sqrt{a}+1+\sqrt{8\sqrt{a}+1}}{2a}$,
∵OP:PQ=1:3.∴$\frac{{x}_{1}}{{x}_{2}}$=$\frac{1}{4}$.
∴$\frac{4\sqrt{a}+1-\sqrt{8\sqrt{a}+1}}{4\sqrt{a}+1+\sqrt{8\sqrt{a}+1}}$=$\frac{1}{4}$,解得a=1,∴b=-4.
∴二次函數(shù)的解析式為y=x2-4x+4.
(2)由(1)可知x1=y1=1,x2=y2=4,
∴AQ=4,
∴S△APQ=$\frac{1}{2}×4×(4-1)$=6.

點(diǎn)評(píng) 本題考查了二次函數(shù)的性質(zhì),直線與拋物線的位置關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知Sn是公比為q的等比數(shù)列{an}的前n項(xiàng)和.若3S1,2S2,S3成等差數(shù)列,則q=( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a,b>0)的實(shí)軸長為4$\sqrt{3}$,焦點(diǎn)到漸近線的距離為$\sqrt{3}$.
(1)求此雙曲線的方程;
(2)已知直線y=$\frac{{\sqrt{3}}}{3}$x-2與雙曲線的右支交于A,B兩點(diǎn),且在雙曲線的右支上存在點(diǎn)C,使得$\overrightarrow{OM}$+$\overrightarrow{OB}$=m$\overrightarrow{OC}$,求m的值及點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.一個(gè)正三棱柱的三視圖如圖所示,則這個(gè)正三棱柱的側(cè)面積為( 。
A.18B.$18\sqrt{3}$C.$6\sqrt{3}$D.$12\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知集合M={x|-1≤x<3 },N={x|2<x≤5},則M∪N={x|-1≤x≤5}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)函數(shù)f(x)在R上存在導(dǎo)數(shù)f′(x),?x∈R,有f(-x)+f(x)=x2,在(0,+∞)上f′(x)<x,若f(2-m)+f(-m)-m2+2m-2≥0,則實(shí)數(shù)m的取值范圍為( 。
A.[-1,1]B.[1,+∞)C.[2,+∞)D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知過T(3,-2)的直線l與拋物線y2=4x交于P,Q兩點(diǎn),點(diǎn)A(1,2)
(1)若直線l的斜率為1,求弦PQ的長
(2)證明直線AP與直線AQ的斜率乘積恒為定值,并求出該定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知△PDQ中,A,B分別為邊PQ上的兩個(gè)三等分點(diǎn),BD為底邊PQ上的高,AE∥DB,如圖1,將△PDQ分別沿AE,DB折起,使得P,Q重合于點(diǎn)C.AB中點(diǎn)為M,如圖2.
(Ⅰ)求證:CM⊥EM;
(Ⅱ)若直線DM與平面ABC所成角的正切值為2,求二面角B-CD-E的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.從含有兩件正品a,b和一件次品c的3件產(chǎn)品中每次任取一件,連續(xù)取兩次,求取出的兩件產(chǎn)品中恰有一件是次品的概率.
(1)每次取出不放回;
(2)每次取出后放回.

查看答案和解析>>

同步練習(xí)冊(cè)答案