為何值時(shí),直線和曲線有兩個(gè)公共點(diǎn)?有一個(gè)公共點(diǎn)?
沒有公共點(diǎn)?
時(shí),兩個(gè);時(shí),一個(gè);時(shí),零個(gè)。

試題分析:解:由,得,即

當(dāng),即時(shí),直線和曲線有兩個(gè)公共點(diǎn);
當(dāng),即時(shí),直線和曲線有一個(gè)公共點(diǎn);
當(dāng),即時(shí),直線和曲線沒有公共點(diǎn)。
點(diǎn)評(píng):本題考查直線和圓錐曲線的位置關(guān)系,直線和圓錐曲線的交點(diǎn)個(gè)數(shù)的判斷方法,求出△=72k2-28,是解題的關(guān)鍵,若圓錐曲線為雙曲線時(shí),有要想著討論二次項(xiàng)的系數(shù)是否為零。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

點(diǎn)P是圓上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PD垂直于軸,垂足為D,Q為線段PD的中點(diǎn)。
(1)求點(diǎn)Q的軌跡方程。
(2)已知點(diǎn)M(1,1)為上述所求方程的圖形內(nèi)一點(diǎn),過點(diǎn)M作弦AB,若點(diǎn)M恰為弦AB的中點(diǎn),求直線AB的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已(12分)知橢圓的中心在坐標(biāo)原點(diǎn),離心率為,一個(gè)焦點(diǎn)是F(0,1).
(Ⅰ)求橢圓方程;
(Ⅱ)直線過點(diǎn)F交橢圓于A、B兩點(diǎn),且,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓(),M,N是橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),P是橢圓上任意一點(diǎn),且直線PM,PN的斜率分別為,=,則橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)已知拋物線過點(diǎn).(1)求拋物線的方程,并求其準(zhǔn)線方程;
(2)是否存在平行于為坐標(biāo)原點(diǎn))的直線,使得直線與拋物線有公共點(diǎn),且直線
距離等于?若存在,求出直線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的準(zhǔn)線方程是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

方程表示的曲線為,給出下列四個(gè)命題:
①曲線不可能是圓;  ②若,則曲線為橢圓;③若曲線為雙曲線,則;④若曲線表示焦點(diǎn)在x軸上的橢圓,則.
其中正確的命題是__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(10分)已知拋物線的頂點(diǎn)是雙曲線的中心,而焦點(diǎn)是雙曲線的頂點(diǎn),求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率,A,B分別為橢圓的長(zhǎng)軸和短軸的端點(diǎn),M為AB的中點(diǎn),O為坐標(biāo)原點(diǎn),且.
(1)求橢圓的方程;
(2)過(-1,0)的直線交橢圓于P,Q兩點(diǎn),求△POQ面積最大時(shí)直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案