2.甲乙丙三人相約晚7時(shí)到8時(shí)之間在某地會(huì)面,已知這三人都不會(huì)違約且無兩人同時(shí)到達(dá),則甲第一個(gè)到達(dá),丙第三個(gè)到達(dá)的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{5}$D.$\frac{1}{6}$

分析 列出所有可能的情況,求出滿足條件的概率即可.

解答 解:共有甲、乙、丙,
甲、丙、乙,
乙,甲、丙,
乙、丙、甲,
丙、甲、乙,
丙、乙、甲6中情況,
甲第一個(gè)到達(dá),丙第三個(gè)到達(dá)是其中的一種,
故甲第一個(gè)到達(dá),丙第三個(gè)到達(dá)的概率為$\frac{1}{6}$,
故選:D.

點(diǎn)評(píng) 本題考查了排列組合問題,考查概率求值問題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)的定義域?yàn)閇0,2],則函數(shù)g(x)=$\frac{f(2x)}{x-1}$的定義域?yàn)椋ā 。?table class="qanwser">A.[0,1)∪(1,4]B.[0,1)C.(-∞,1)∪(1,+∞)D.[0,1)∪(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.一組數(shù)據(jù)如表:
x12345
y1.31.92.52.73.6
(1)畫出散點(diǎn)圖;
(2)根據(jù)下面提供的參考公式,求出回歸直線方程,并估計(jì)當(dāng)x=8時(shí),y的值.
(參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.定義在(0,+∞)上的函數(shù)y=f(x)的反函數(shù)為y=f-1(x),若g(x)=$\left\{\begin{array}{l}{{3}^{x}-1,x≤0}\\{f(x),x>0}\end{array}\right.$為奇函數(shù),則f-1(x)=2的解為$\frac{8}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知一個(gè)遞增的等差數(shù)列{an}的前三項(xiàng)的和為-3,前三項(xiàng)的積為8.?dāng)?shù)列$\{\frac{b_n}{a_n}\}$的前n項(xiàng)和為${S_n}={2^{n+1}}-2$.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)求數(shù)列$\{\frac{b_n}{a_n}\}$的通項(xiàng)公式.
(3)是否存在一個(gè)等差數(shù)列{cn},使得等式${b_n}={c_{n+1}}•{2^{n+1}}-{c_n}•{2^n}$對(duì)所有的正整數(shù)n都成立.若存在,求出所有滿足條件的等差數(shù)列{cn}的通項(xiàng)公式,并求數(shù)列{bn}的前n項(xiàng)和Tn;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知$\overrightarrow a=(1,x),\overrightarrow b=(x-1,2)$,若$\overrightarrow a$∥$\overrightarrow b$,則實(shí)數(shù)x的值為( 。
A.2B.-1C.1或-2D.-1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)$f(x)=aln(x-a)-\frac{1}{2}{x^2}+x$(a<0).
(Ⅰ)當(dāng)a=-3時(shí),求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若函數(shù)f(x)有且僅有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=e|x|-cosx的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.將函數(shù)f(x)=$\sqrt{3}$sin$\frac{x}{2}$-cos$\frac{x}{2}$的圖象向右平移$\frac{2π}{3}$個(gè)單位長(zhǎng)度得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)的一個(gè)單調(diào)遞減區(qū)間是( 。
A.(-$\frac{π}{4}$,$\frac{π}{2}$)B.($\frac{π}{2}$,π)C.(-$\frac{π}{2}$,-$\frac{π}{4}$)D.($\frac{3π}{2}$,2π)

查看答案和解析>>

同步練習(xí)冊(cè)答案