定義在上的函數(shù),當時,,且對任意的 ,有,
(Ⅰ)求證:;
(Ⅱ)求證:對任意的,恒有
(Ⅲ)若,求的取值范圍.

(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ).

解析試題分析:(Ⅰ)令即可得證;(Ⅱ)令得,,由已知x>0時,f(x)>1>0,當x<0時,-x>0,f(-x)>0,故對任意x∈R,f(x)>0;(Ⅲ)先證明為增函數(shù):任取x2>x1,,故,故其為增函數(shù);然后利用單調(diào)性脫解一元二次不等式.
試題解析:(Ⅰ)令,則f(0)=[f(0)]2  ∵ f(0)≠0 ∴ f(0)=1  2分
(Ⅱ)令則 f(0)=f(x)f(-x)∴  4分
由已知x>0時,f(x)>1>0,當x<0時,-x>0,f(-x)>0
,又x=0時,f(0)=1>0       6分
∴對任意x∈R,f(x)>0               7分
(Ⅲ)任取x2>x1,則f(x2)>0,f(x1)>0,x2-x1>0  8分

∴f(x2)>f(x1) ∴ f(x)在R上是增函數(shù)       10分
f(x)·f(2x-x2)=f[x+(2x-x2)]=f(-x2+3x)又1=f(0),f(x)在R上遞增
∴由f(3x-x2)>f(0)得:x-x2>0 ∴ 0<x<3       13分
考點:抽象函數(shù)、增函數(shù)的證明、一元二次不等式解法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

求值化簡:
(Ⅰ);
(Ⅱ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,某生態(tài)園欲把一塊四邊形地辟為水果園,其中, ,.若經(jīng)過上一點上一點鋪設(shè)一條道路,且將四邊形分成面積相等的兩部分,設(shè)

(1)求的關(guān)系式;
(2)如果是灌溉水管的位置,為了省錢,希望它最短,求的長的最小值;
(3)如果是參觀路線,希望它最長,那么的位置在哪里?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(1)若是函數(shù)的極值點,求的值;
(2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù).若的定義域為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)的最大值為,最小值為,其中
(1)求、的值(用表示);
(2)已知角的頂點與平面直角坐標系中的原點重合,始邊與軸的正半軸重合,終邊經(jīng)過點.求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

統(tǒng)計表明:某種型號的汽車在勻速行駛中每小時的耗油量(升)關(guān)于行駛速度(千米/每小時)的函數(shù)解析式可以表示為,已知甲、乙兩地相距100千米.
(1)當汽車以40千米/小時的速度行駛時,從甲地到乙地要耗油多少升?
(2)當汽車以多大速度行駛時,從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)a為實數(shù),記函數(shù)的最大值為
(1)設(shè)t=,求t的取值范圍,并把f(x)表示為t的函數(shù)m(t) ;
(2)求 ;
(3)試求滿足的所有實數(shù)a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

國家助學(xué)貸款是由財政貼息的信用貸款(即無利息貸款),旨在幫助高校家庭經(jīng)濟困難學(xué)生支付在校學(xué)習(xí)期間所需的學(xué)費、住宿費及生活費.每一年度申請總額不超過6000元.某大學(xué)2013屆畢業(yè)生小王在本科期間共申請了24000元助學(xué)貸款,并承諾在畢業(yè)后年內(nèi)(按36個月計)全部還清.簽約的單位提供的工資標準為第一年內(nèi)每月1500元,第個月開始,每月工資比前一個月增加直到4000元.小王計劃前12個月每個月還款額為500,第13個月開始,每月還款額比前一個月多元.
(1)假設(shè)小王在第個月還清貸款(),試用表示小王第)個月的還款額;
(2)當時,小王將在第幾個月還清最后一筆貸款?
(3)在(2)的條件下,他還清最后一筆貸款的那個月工資的余額是否能滿足此月元的基本生活費?(參考數(shù)據(jù):

查看答案和解析>>

同步練習(xí)冊答案