(2012•天津)某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對(duì)學(xué)生進(jìn)行視力調(diào)查.
(1)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目;
(2)若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析.
(ⅰ)列出所有可能的抽取結(jié)果;
(ⅱ)求抽取的2所學(xué)校均為小學(xué)的概率.
分析:(1)利用分層抽樣的意義,先確定抽樣比,在確定每層中抽取的學(xué)校數(shù)目;
(2)(i)從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校,所有結(jié)果共有
C
2
6
=15種,按規(guī)律列舉即可;
(ii)先列舉抽取結(jié)果兩所學(xué)校均為小學(xué)的基本事件數(shù),再利用古典概型概率的計(jì)算公式即可得結(jié)果
解答:解:(I)抽樣比為
6
21+14+7
=
1
7

故應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目分別為21×
1
7
=3,14×
1
7
=2,7×
1
7
=1
(II)(i)在抽取到的6所學(xué)校中,3所小學(xué)分別記為1、2、3,兩所中學(xué)分別記為a、b,大學(xué)記為A
則抽取2所學(xué)校的所有可能結(jié)果為{1,2},{1,3},{1,a},{1,b},{1,A},{2,3},{2,a},{2,b},{2,A},{3,a},{3,b},{3,A},{a,b},{a,A},{b,A},共15種
(ii)設(shè)B={抽取的2所學(xué)校均為小學(xué)},事件B的所有可能結(jié)果為{1,2},{1,3},{2,3}共3種,
∴P(B)=
3
15
=
1
5
點(diǎn)評(píng):本題主要考查了統(tǒng)計(jì)中分層抽樣的意義,古典概型概率的計(jì)算方法,列舉法計(jì)數(shù)的方法,屬基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•天津)某地區(qū)有小學(xué)150所,中學(xué)75所,大學(xué)25所.先采用分層抽樣的方法從這些學(xué)校中抽取30所學(xué)校對(duì)學(xué)生進(jìn)行視力調(diào)查,應(yīng)從小學(xué)中抽取
18
18
所學(xué)校,中學(xué)中抽取
9
9
所學(xué)校.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•天津模擬)已知某單位有50名職工,現(xiàn)要從中抽取10名職工,將全體職工隨機(jī)按1~50編號(hào),并按編號(hào)順序平均分成10組,按各組內(nèi)抽取的編號(hào)依次增加5進(jìn)行系統(tǒng)抽樣.
(Ⅰ)若第1組抽出的號(hào)碼為2,寫出所有被抽出職工的號(hào)碼;
(Ⅱ)分別統(tǒng)計(jì)這10名職工的體重(單位:公斤),獲得體重?cái)?shù)據(jù)的莖葉圖如圖所示,求該樣本的方差;
(Ⅲ)在(Ⅱ)的條件下,從體重不輕于73公斤(≥73公斤)的職工中抽取2人,求體重為76公斤的職工被抽取到的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012天津理)現(xiàn)有4個(gè)人去參加某娛樂活動(dòng),該活動(dòng)有甲、乙兩個(gè)游戲可供參加者選擇.為增加趣味性,約定:每個(gè)人通過擲一枚質(zhì)地均勻的骰子決定自己去參加個(gè)游戲,擲出點(diǎn)數(shù)為1或2的人去參加甲游戲,擲出點(diǎn)數(shù)大于2的人去參加乙游戲.

(Ⅰ)求這4個(gè)人中恰有2人去參加甲游戲的概率:

(Ⅱ)求這4個(gè)人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率:

(Ⅲ)用分別表示這4個(gè)人中去參加甲、乙游戲的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案