分析 利用分離常數(shù)法求解即可.
解答 解:∵函數(shù)f(x)的定義域?yàn)閧x∈R|x≠1}
函數(shù)f(x)=$\frac{3x+1}{x-1}$=$\frac{3(x-1)+4}{x-1}$=$3+\frac{4}{x-1}$;
∵$\frac{4}{x-1}$≠0,
∴f(x)≠3
所以函數(shù)f(x)的值域是(-∞,3)∪(3,+∞)
故答案為:(-∞,3)∪(3,+∞)
點(diǎn)評(píng) 本題考查了函數(shù)值域的求法.高中函數(shù)值域求法有:1、觀察法,2、配方法,3、反函數(shù)法,4、判別式法;5、換元法,6、數(shù)形結(jié)合法,7、不等式法,8、分離常數(shù)法,9、單調(diào)性法,10、利用導(dǎo)數(shù)求函數(shù)的值域,11、最值法,12、構(gòu)造法,13、比例法.要根據(jù)題意選擇.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(-∞,-\frac{1}{8}]$ | B. | $(-∞,-\frac{1}{8}]∪[1,+∞)$ | C. | [1,+∞) | D. | $[-\frac{1}{8},\;1]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1)(3)(4) | B. | (1)(2) | C. | (3)(4) | D. | (2)(3)(4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,3) | B. | [1,3) | C. | [1,+∞) | D. | [2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6$\sqrt{3}$ | B. | 6 | C. | 12 | D. | 12$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com