【題目】已知a>0,函數(shù)f(x)= +|lnx﹣a|,x∈[1,e2].
(1)當(dāng)a=3時,求曲線y=f(x)在點(diǎn)(3,f(3))處的切線方程;
(2)若f(x)≤ 恒成立,求實(shí)數(shù)a的取值范圍.
【答案】
(1)解:當(dāng)a=3時,f(x)= +|lnx﹣3|= ﹣lnx+3,x∈[1,e2];
故f(3)=1﹣ln3+3=4﹣ln3,
f′(x)=﹣ ﹣ ,f′(3)=﹣ ﹣ =﹣ ;
故曲線y=f(x)在點(diǎn)(3,f(3))處的切線方程為y﹣(4﹣ln3)=﹣ (x﹣3),
即2x+3y﹣18+3ln3=0
(2)解:由題意得, +|lnx﹣a|≤ ,
當(dāng)a≥2時,上式可化為 ﹣lnx+a≤ 恒成立,
且 ﹣lnx+a在[1,e2]上是減函數(shù),
故只需使a+a≤ ,無解;
當(dāng)0<a<2時,
f(x)= ,
故f(x)在[1,ea]上是減函數(shù),在[ea,e2]上是增函數(shù),
故只需使 ;
解得 ≤a≤
【解析】(1)當(dāng)a=3時,化簡f(x)= +|lnx﹣3|= ﹣lnx+3,x∈[1,e2];從而求導(dǎo),再求切線方程;(2)由題意得, +|lnx﹣a|≤ ,分a≥2與0<a<2討論求函數(shù)的最值,從而化恒成立問題為最值問題即可.
【考點(diǎn)精析】通過靈活運(yùn)用函數(shù)的最大(小)值與導(dǎo)數(shù),掌握求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某測試中,卷面滿分為100分,60分為及格,為了調(diào)查午休對本次測試前兩個月復(fù)習(xí)效果的影響,特對復(fù)習(xí)中進(jìn)行午休和不進(jìn)行午休的考生進(jìn)行了測試成績的統(tǒng)計,數(shù)據(jù)如下表所示:
分?jǐn)?shù)段 | 29~ 40 | 41~ 50 | 51~ 60 | 61~ 70 | 71~ 80 | 81~ 90 | 91~ 100 |
午休考 生人數(shù) | 23 | 47 | 30 | 21 | 14 | 31 | 14 |
不午休 考生人數(shù) | 17 | 51 | 67 | 15 | 30 | 17 | 3 |
(1)根據(jù)上述表格完成列聯(lián)表:
及格人數(shù) | 不及格人數(shù) | 總計 | |
午休 | |||
不午休 | |||
總計 |
(2)根據(jù)列聯(lián)表可以得出什么樣的結(jié)論?對今后的復(fù)習(xí)有什么指導(dǎo)意義?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四面體ABCD中,AB、BC、BD兩兩垂直,AB=BC=BD=4,E、F分別為棱BC、AD的中點(diǎn).
(1)求異面直線AB與EF所成角的余弦值;
(2)求E到平面ACD的距離;
(3)求EF與平面ACD所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的箱子里放有四個質(zhì)地相同的小球,四個小球標(biāo)的號碼分別為1,1,2,3.現(xiàn)甲、乙兩位同學(xué)依次從箱子里隨機(jī)摸取一個球出來,記下號碼并放回.
(Ⅰ)求甲、乙兩位同學(xué)所摸的球號碼相同的概率;
(Ⅱ)求甲所摸的球號碼大于乙所摸的球號碼的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知焦點(diǎn)在x軸的橢圓的離心率與雙曲線3x2-y2=3的離心率互為倒數(shù),且過點(diǎn),求:(1)求橢圓方程;
(2)若直線l:y=kx+m(k≠0)與橢圓交于不同的兩點(diǎn)M,N,點(diǎn),有|MP|=|NP|,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以平面直角坐標(biāo)系原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸,以平面直角坐標(biāo)系的長度單位為長度單位建立極坐標(biāo)系.已知直線l的參數(shù)方程為 (t為參數(shù)),曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ
(Ⅰ) 求曲線C的直角坐標(biāo)方程;
(Ⅱ) 設(shè)直線l與曲線C相交于A,B兩點(diǎn),求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某程序框圖如圖所示,現(xiàn)輸入如下四個函數(shù),則可以輸出的函數(shù)是( )
A.f(x)=x2
B.f(x)=sinx
C.f(x)=ex
D.f(x)=
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= sinωxcosωx﹣cos2ωx﹣ (ω>0,x∈R)的圖象上相鄰兩個最高點(diǎn)的距離為π.
(Ⅰ)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若△ABC三個內(nèi)角A、B、C的對邊分別為a、b、c,且c= ,f(C)=0,sinB=3sinA,求a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于x的方程 正實(shí)數(shù)解有且僅有一個,那么實(shí)數(shù)a的取值范圍為( )
A.{a|a≤0}
B.{a|a≤0或a=2}
C.{a|a≥0}
D.{a|a≥0或a=﹣2}
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com