17.函數(shù)y=1-cos2x的最小正周期是π.

分析 利用y=Acos(ωx+φ)的周期等于 T=$\frac{2π}{ω}$,得出結(jié)論.

解答 解:函數(shù)y=1-cos2x的最小正周期是$\frac{2π}{2}$=π,
故答案為:π.

點(diǎn)評(píng) 本題主要考查三角函數(shù)的周期性及其求法,利用了y=Acos(ωx+φ)的周期等于 T=$\frac{2π}{ω}$,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=sin2x-4sin3xcosx的最小正周期與奇偶性分別是( 。
A.$\frac{π}{2}$;奇函數(shù)B.$\frac{π}{4}$;奇函數(shù)C.$\frac{π}{2}$;偶函數(shù)D.$\frac{π}{4}$;偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.非零向量$\overrightarrow a$、$\overrightarrow b$滿足|$\overrightarrow b}$|=2,<$\overrightarrow a$,$\overrightarrow b$>=30°,且對(duì)?λ>0,且|$\overrightarrow a$-λ$\overrightarrow b}$|≥|${\overrightarrow a$-$\overrightarrow b}$|恒成立,則$\overrightarrow a$•$\overrightarrow b$=( 。
A.4B.$2\sqrt{3}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=sin($\frac{π}{6}$-x)sinx的最大值是$\frac{1}{2}-\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.執(zhí)行如圖所示的程序框圖,則輸出的結(jié)果是( 。
A.29B.30C.31D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=sin(2x+φ)(|φ|<$\frac{π}{2}$)的圖象向左平移$\frac{π}{6}$個(gè)單位后所得圖象對(duì)應(yīng)的函數(shù)是偶函數(shù),且存在x∈[0,$\frac{π}{2}$],使得不等式f(x)≤m成立,則m的最小值是(  )
A.-1B.-$\frac{1}{2}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知拋物線C:y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)M(x0,4)是C上一點(diǎn),且|MF|=4.
(1)求點(diǎn)M的坐標(biāo)和拋物線C的方程.
(2)若斜率為-1的直線與拋物線C交于不同的兩點(diǎn)A(x1,y1),B(x2,y2),且y1≤0,y2≤0,當(dāng)△MAB面積最大時(shí),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知橢圓的離心率e=$\frac{4}{5}$,一條準(zhǔn)線的方程為y=-$\frac{25}{4}$,求此橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)函數(shù)f(x)=lnx-$\frac{1}{2}$ax2-bx,
(1)當(dāng)a=$\frac{1}{3}$,b=$\frac{2}{3}$時(shí),求f(x)的最大值;
(2)令F(x)=f(x)+$\frac{1}{2}$ax2+bx+$\frac{a}{x}$(0<x≤3),其圖象上任意一點(diǎn)P(x0,y0)處切線的斜率k≤2恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案