10.若f(x)=kx3-x2+kx-4在R上無極值,則實(shí)數(shù)k的取值范圍是(-∞,-$\frac{\sqrt{3}}{3}$]∪[$\frac{\sqrt{3}}{3}$,+∞).

分析 函數(shù)無極值等價(jià)為函數(shù)為單調(diào)函數(shù),求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)進(jìn)行求解即可.

解答 解:函數(shù)的導(dǎo)數(shù)為f′(x)=3kx2-2x+k,
若函數(shù)無極值等價(jià)為函數(shù)為單調(diào)函數(shù),即f′(x)≤0或f′(x)≥0恒成立,
若k=0,則f′(x)=-2x,則函數(shù)存在極值,不滿足條件.
若k=≠0,則函數(shù)等價(jià)為f′(x)=0不存在兩個(gè)根,即判別式△≤0,
即判別式△=4-12k2≤0,即k2≥$\frac{1}{3}$,即k≥$\frac{\sqrt{3}}{3}$或k≤-$\frac{\sqrt{3}}{3}$,
即實(shí)數(shù)k的取值范圍(-∞,-$\frac{\sqrt{3}}{3}$]∪[$\frac{\sqrt{3}}{3}$,+∞),
故答案為:(-∞,-$\frac{\sqrt{3}}{3}$]∪[$\frac{\sqrt{3}}{3}$,+∞)

點(diǎn)評 本題主要考查導(dǎo)數(shù)的綜合應(yīng)用,根據(jù)函數(shù)極值和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵.利用轉(zhuǎn)化法是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{6}}}{3}$,直線l:x+y-1=0與C相交于A,B兩點(diǎn).
(Ⅰ)證明:線段AB的中點(diǎn)為定點(diǎn),并求出該定點(diǎn)坐標(biāo);
(Ⅱ)設(shè)M(1,0),$\overrightarrow{MA}=λ\overrightarrow{BM}$,當(dāng)$a∈({\frac{{\sqrt{7}}}{2},\sqrt{3}})$時(shí),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)函數(shù)$f(x)=cos(2x+\frac{π}{3})+{sin^2}x$.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)若$0<α<\frac{π}{2}<β<π$,$f(\frac{π}{4}-\frac{β}{2})=\frac{1}{2}+\frac{{\sqrt{3}}}{6}$,$f(\frac{α+β}{2})=\frac{1}{2}-\frac{{7\sqrt{3}}}{18}$,求sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)2<x<3,則ex與ln10x的大小關(guān)系為(  )
A.ex>ln10xB.ex<ln10xC.ex=ln10xD.與x的取值有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖所示的算法框圖中,語句“輸出i”被執(zhí)行的次數(shù)為34.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知A(6,0),B(0,6),C為橢圓$\frac{{x}^{2}}{20}$$+\frac{{y}^{2}}{5}$=1上一點(diǎn),求△ABC面積最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ex+ax-1(a∈R).
(I)求f(x)的單調(diào)區(qū)間:
(Ⅱ)若f(x)≥x2對x≥0都成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.平面直角坐標(biāo)系中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上的兩點(diǎn)M,N關(guān)于原點(diǎn)對稱,P為橢圓上異于M,N的兩點(diǎn),若直線PM,PN的斜率分別為k1,k2(k1,k2存在且不為0),橢圓的離心率$\frac{\sqrt{2}}{2}$.
(1)求k1•k2的值;
(2)若F1,F(xiàn)2是橢圓C左、右焦點(diǎn),且直線PF1交橢圓C于Q,若△PF2Q的面積最大值為$\sqrt{2}$時(shí),求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知等比數(shù)列{an}的前n項(xiàng)和為Sn,若S3=2,S9=146,求S6的值.

查看答案和解析>>

同步練習(xí)冊答案