16.集合A中有3個元素,集合B中有2個元素,則映射f:A→B的個數(shù)為( 。
A.3個B.5個C.6個D.8個

分析 由映射的定義知集合A中每一個元素在集合B中有唯一的元素和它對應,A中每個元素在集合B中有兩種選擇,由分步計數(shù)原理求解即可.

解答 解:由映射的定義知A中每個元素在集合B中有兩種選擇,
由分步計數(shù)原理得集合A中有3個元素,集合B中有2個元素,不同映射共有2×2×2=8個
故選D.

點評 本題考查映射的概念,考查兩個集合之間映射的方式,求解本題可以利用列舉法,最好選用計數(shù)原理,方便快捷,可迅速得出答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知數(shù)列{an}的前n項和Sn=n2+9n.
(1)求數(shù)列{an}的通項公式an;
(2)求數(shù)列{$\frac{2}{{a}_{n}•{a}_{n+2}}$}的前100項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.以下是搜集到的開封市祥符區(qū)新房屋的銷售價格y(萬元)和房屋的面積x(m2)的數(shù)據(jù):
x8095100110115
y18.421.623.224.827
已知變量x和y線性相關.
(Ⅰ)求$\overline{x}$、$\overline{y}$,及線性回歸方程;
(Ⅱ)據(jù)(Ⅰ)的結(jié)果估計當房屋面積為85m2時的銷售價格.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.函數(shù)f(x)=$\sqrt{{4^x}-{2^{x+1}}}$的定義域為[1,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知命題p:定義在R上的奇函數(shù)f(x)滿足f(0)=0,命題q:函數(shù)f(x)=$\frac{{{x^3}-x}}{x-1}$為偶函數(shù),則下列命題中為真命題的是(  )
A.(¬p)∨qB.p∧qC.(¬p)∧(¬q)D.(¬p)∨(¬q)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.平面直角坐標系xOy中,橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的右焦點為F,離心率e=$\frac{{\sqrt{3}}}{2}$,過點F且垂直于x軸的直線被圓截得的弦長為1.
(1)求橢圓C的方程;
(2)記橢圓C的上、下頂點分別為A,B,設過點M(m,-2)(m≠0)的直線MA,MB與橢圓C分別交于點P,Q,求證:直線PQ必過一定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設p:函數(shù)f(x)=2|x-a|在區(qū)間(4,+∞)上單調(diào)遞增;q:loga2<1,如果“¬p”是真命題,“p或q”也是真命題,則實數(shù)a的取值范圍為a>4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知不等式$\frac{a}{sinx}$+$\frac{a}{cosx}$>1對x∈[${\frac{π}{4}$,$\frac{π}{3}}$]恒成立,則a的取值范圍是a>$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知二次函數(shù)y=f(x)在x=2處取得最小值-4,且y=f(x)的圖象經(jīng)過原點.
(1)求f(x)的解析式;
(2)求函數(shù)y=f(x)在[-1,4]上的最大值和最小值.

查看答案和解析>>

同步練習冊答案