精英家教網 > 高中數學 > 題目詳情

【題目】已知數列 Sn為其前n項和.計算得 觀察上述結果,推測出計算Sn的公式,并用數學歸納法加以證明.

【答案】解:觀察分析題設條件可知 證明如下:(i)當n=1時, ,等式成立.
(ii)設當n=k時等式成立,即 = = = = = =
由此可知,當n=k+1時等式也成立.根據(1)(2)可知,等式對任何n∈N都成立
【解析】觀察分析題設條件可知 .然后再用數學歸納法進行證明.
【考點精析】根據題目的已知條件,利用數列的通項公式和數學歸納法的定義的相關知識可以得到問題的答案,需要掌握如果數列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數列的通項公式;數學歸納法是證明關于正整數n的命題的一種方法.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數, .

(Ⅰ)求函數的單調區(qū)間;

(Ⅱ)設,其中為函數的導函數.判斷在定義域內是否為單調函數,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知f(x+y)=f(x)+f(y)且f(1)=2,則f(1)+f(2)+…+f(n)不能等于(
A.f(1)+2f(1)+…+nf(1)
B.f(
C.n(n+1)
D.n(n+1)f(1)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如表提供了某廠節(jié)能降耗技術改造后在生產A產品過程中記錄的產量x(噸)與相應的生產能耗y(噸)的幾組對應數據,根據表提供的數據,求出y關于x的線性回歸方程為 =0.7x+0.35,則下列結論錯誤的是(

x

3

4

5

6

y

2.5

t

4

4.5


A.產品的生產能耗與產量呈正相關
B.t的取值必定是3.15
C.回歸直線一定過點(4,5,3,5)
D.A產品每多生產1噸,則相應的生產能耗約增加0.7噸

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若函數滿足:集合中至少存在三個不同的數構成等比數列,則稱函數是等比源函數

)判斷下列函數:①;;中,哪些是等比源函數?(不需證明)

)判斷函數是否為等比源函數,并證明你的結論.

)證明: ,函數都是等比源函數

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= ,其中 =(2cosx, sin2x), =(cosx,1),x∈R
(1)求函數y=f(x)的最小正周期和單調遞增區(qū)間:
(2)在△ABC中,角A,B,C所對的邊分別為a,b,c,f(A)=2,a= 且sinB=2sinC,求△ABC的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)=lnx+ ,m∈R,若對任意b>a>0, <1恒成立,則m的取值范圍為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我市某礦山企業(yè)生產某產品的年固定成本為萬元,每生產千件該產品需另投入萬元,設該企業(yè)年內共生產此種產品千件,并且全部銷售完,每千件的銷售收入為萬元,且

(Ⅰ)寫出年利潤(萬元)關于產品年產量(千件)的函數關系式;

(Ⅱ)問:年產量為多少千件時,該企業(yè)生產此產品所獲年利潤最大?

注:年利潤=年銷售收入-年總成本.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設甲、乙兩人每次射擊命中目標的概率分別為 ,且各次射擊相互獨立,若按甲、乙、甲、乙…的次序輪流射擊,直到有一人擊中目標就停止射擊,則停止射擊時,甲射擊了兩次的概率是(
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案