2.下列函數(shù)中,既不是奇函數(shù),也不是偶函數(shù)的是(  )
A.$y=\frac{1}{x}+sinx$B.$y=\frac{sinx}{x}$C.$y=\frac{1}{x}+cosx$D.$y=\frac{cosx}{x}$

分析 利用是奇函數(shù)或是偶函數(shù)的必要條件是定義域關(guān)于原點(diǎn)對(duì)稱以及f(-x)和f(x)的關(guān)系即可得出.

解答 解:對(duì)于A:定義域是{x|x≠0},f(-x)=-$\frac{1}{x}$-sinx=-f(x),是奇函數(shù);
對(duì)于B:定義域是{x|x≠0},f(-x)=$\frac{-sinx}{-x}$=f(x),偶函數(shù);
對(duì)于C:定義域是{x|x≠0},f(-x)=-$\frac{1}{x}$+cosx,既不是奇函數(shù),也不是偶函數(shù);
對(duì)于D:定義域是{x|x≠0},f(-x)=$\frac{cosx}{-x}$=-f(x),是奇函數(shù);
故選:D.

點(diǎn)評(píng) 本題考查了函數(shù)的奇偶性,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)復(fù)數(shù)z1=-1+3i,z2=1+i,則$\frac{{{z}_{1}+z}_{2}}{{z}_{1}-{z}_{2}}$=( 。
A.-1-iB.1+iC.1-iD.-1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知M(x,y)是以A(-2,3),B(3,2)為端點(diǎn)的線段上一動(dòng)點(diǎn),則$\frac{y-1}{x+1}$的取值范圍為( 。
A.[-2,$\frac{1}{4}$]B.(-∞,-2]C.(-∞,2]∪[$\frac{1}{4}$,+∞)D.[$\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若集合A={x|3x+1>0},B={|x-1|<2},則A∩B=(-$\frac{1}{3}$,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知$\overrightarrow a=(cosx,-2),\overrightarrow b=(sinx,1)$且$\overrightarrow a$∥$\overrightarrow b$,則sin2x=(  )
A.$-\frac{4}{5}$B.-3C.3D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知集合$A=\left\{{x|y=lg({a-x})}\right\},B=\left\{{y|y=\frac{{2{e^x}+1}}{{{e^x}+1}}}\right\}$,且(∁RB)∪A=R,則實(shí)數(shù)a的取值范圍是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}\frac{1}{2}x-1,x>0\\{({\frac{1}{2}})^x},x≤0\end{array}\right.$,若f(a)=1,則實(shí)數(shù)a的值等于0或4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$\overrightarrow a=(1,\sqrt{3})$,$\vec b=(-\sqrt{3},3)$,則$|{\overrightarrow a}|$=2;$\overrightarrow a•\overrightarrow b$=$2\sqrt{3}$;$\overrightarrow a$在$\overrightarrow b$方向上的投影為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)y=$\frac{4sinxcosx}{2sinx+2cosx+1}$,x∈(0,$\frac{π}{2}$).
(1)令t=sinx+cosx,可將已知三角函數(shù)關(guān)系y=f(x)轉(zhuǎn)換成代數(shù)函數(shù)關(guān)系y=g(t),試寫出函數(shù)y=g(t)的表達(dá)式及定義域;
(2)求函數(shù)y=f(x)的最大值;
(3)函數(shù)y=f(x)在區(qū)間(0,$\frac{π}{2}$)內(nèi)是單調(diào)函數(shù)嗎?請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案