分析 (Ⅰ)根據(jù)相鄰兩條對稱軸的距離為$\frac{π}{2}$,可得周期,從而求出ω,圖象過點$({\frac{π}{4},\frac{{\sqrt{3}}}{2}})$,帶入求出φ,即可求函數(shù)f(x)的解析式及其在[0,π]上的單調(diào)遞增區(qū)間.
(Ⅱ)根據(jù)$f({\frac{A}{2}})+cosA=\frac{1}{2}$,利用三角函數(shù)公式化簡可得∠A的大。
解答 解:(Ⅰ)由相鄰兩條對稱軸的距離為$\frac{π}{2}$,可得其周期為$T=\frac{2π}{ω}=π$,∴ω=2.
則f(x)=sin(2x-φ)
∵圖象過點$({\frac{π}{4},\frac{{\sqrt{3}}}{2}})$,且$ω>0,0<φ<\frac{π}{2}$,坐標(biāo)帶入:
得:$\frac{\sqrt{3}}{2}$=sin(2×$\frac{π}{4}$-φ),即cosφ=$\frac{\sqrt{3}}{2}$.
∴φ=$\frac{π}{6}$
那么:函數(shù)f(x)的解析式為:f(x)=sin(2x-$\frac{π}{6}$)
由$2kπ-\frac{π}{2}<2x-\frac{π}{6}<2kπ+\frac{π}{2}$,k∈Z.
可得:$kπ-\frac{π}{6}≤x≤kπ+\frac{π}{3}$
∴x在[0,π]上增區(qū)間為$({0,\frac{π}{3}})$和$({\frac{5π}{6},π})$.
(Ⅱ)由$f({\frac{A}{2}})+cosA=\frac{1}{2}$,可得$sin({A-\frac{π}{6}})+cosA=\frac{1}{2}$,
則$\frac{{\sqrt{3}}}{2}sinA+\frac{1}{2}cosA=\frac{1}{2}$,
得$sin({A+\frac{π}{6}})=\frac{1}{2}$
由于0<A<π,
則$\frac{π}{6}<A+\frac{π}{6}<\frac{7π}{6}$,
那么:$A+\frac{π}{6}=\frac{5π}{6}$
∴$A=\frac{2π}{3}$.
點評 本題主要考查對三角函數(shù)的化簡能力和三角函數(shù)的圖象和性質(zhì)的運用,確定函數(shù)的解析式是解決本題的關(guān)鍵.屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,6] | B. | [0,4] | C. | [6,+∞) | D. | [4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | 0 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [0,+∞) | B. | (0,1) | C. | (-1,+∞) | D. | (-∞,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com