10.若i為虛數(shù)單位,則$\frac{{1+{i^{2017}}}}{{{{(1-i)}^2}}}$的虛部為$\frac{1}{2}$.

分析 直接由復(fù)數(shù)代數(shù)形式的乘除運(yùn)算及虛數(shù)單位i的運(yùn)算性質(zhì)化簡(jiǎn)得答案.

解答 解:$\frac{{1+{i^{2017}}}}{{{{(1-i)}^2}}}$=$\frac{1+({i}^{4})^{504}•i}{-2i}=\frac{1+i}{-2i}=\frac{i(1+i)}{-2{i}^{2}}=-\frac{1}{2}+\frac{1}{2}i$,
則$\frac{{1+{i^{2017}}}}{{{{(1-i)}^2}}}$的虛部為:$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了虛數(shù)單位i的性質(zhì),是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.某旅游愛(ài)好者計(jì)劃從3個(gè)亞洲國(guó)家A1,A2,A3和3個(gè)歐洲國(guó)家B1,B2,B3中選擇2個(gè)國(guó)家去旅游.
(Ⅰ)若從這6個(gè)國(guó)家中任選2個(gè),求這2個(gè)國(guó)家都是亞洲國(guó)家的概率;
(Ⅱ)若從亞洲國(guó)家和歐洲國(guó)家中各任選1個(gè),求這2個(gè)國(guó)家包括A1但不包括B1的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知全集U=R,集合A={x|x<-2或x>2},則∁UA=( 。
A.(-2,2)B.(-∞,-2)∪(2,+∞)C.[-2,2]D.(-∞,-2]∪[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知函數(shù)f(x)=3x-($\frac{1}{3}$)x,則f(x)( 。
A.是奇函數(shù),且在R上是增函數(shù)B.是偶函數(shù),且在R上是增函數(shù)
C.是奇函數(shù),且在R上是減函數(shù)D.是偶函數(shù),且在R上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若直線l 的方向向量為$\overrightarrow{a}$,平面α的法向量為$\overrightarrow{n}$且l?α,則能使l∥α的是( 。
A.$\overrightarrow a=(1,-1,3),\overrightarrow n=(0,3,1)$B.$\overrightarrow a=(1,0,0),\overrightarrow n=(-2,0,0)$
C.$\overrightarrow a=(0,2,1),\overrightarrow n=(-1,0,-1)$D.$\overrightarrow a=(1,3,5),\overrightarrow n=(1,0,1)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知函數(shù)f(x)=sin(ωx-φ),$(ω>0,0<φ<\frac{π}{2})$的圖象經(jīng)過(guò)點(diǎn)$({\frac{π}{4},\frac{{\sqrt{3}}}{2}})$,且相鄰兩條對(duì)稱軸的距離為$\frac{π}{2}$.
(Ⅰ)求函數(shù)f(x)的解析式及其在[0,π]上的單調(diào)遞增區(qū)間;
(Ⅱ)在△ABC中,a,b,c分別是A,B,C的對(duì)邊,若$f({\frac{A}{2}})+cosA=\frac{1}{2}$,求∠A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知復(fù)數(shù)$z=\frac{{a+{i}}}{{1+{i}}}$(a∈R)的實(shí)部為2,則$\overline z$=( 。
A.2+iB.2-iC.$2-\frac{1}{2}{i}$D.$2+\frac{1}{2}{i}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知{an}是各項(xiàng)均為正數(shù)的等比數(shù)列,且a1+a2=6,a1a2=a3
(1)求數(shù)列{an}通項(xiàng)公式;
(2){bn} 為各項(xiàng)非零的等差數(shù)列,其前n項(xiàng)和為Sn,已知S2n+1=bnbn+1,求數(shù)列$\left\{\frac{_{n}}{{a}_{n}}\right\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.如圖,四棱錐P-ABCD中,側(cè)面PAD為等邊三角形且垂直于底面ABCD,AB=BC=$\frac{1}{2}$AD,∠BAD=∠ABC=90°.
(1)證明:直線BC∥平面PAD;
(2)若△PCD面積為2$\sqrt{7}$,求四棱錐P-ABCD的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案