4.如圖,在以A,B,C,D,E,F(xiàn)為頂點的五面體中,面ABEF為正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E與二面角C-BE-F都是60°.
(1)證明平面ABEF⊥平面EFDC;
(2)證明:CD∥EF
(3)求二面角E-BC-A的余弦值.

分析 (1)由AF⊥EF,得AF⊥DF,從而AF⊥平面EFDC,由此能證明平面ABEF⊥平面EFDC.
(2)由AF⊥DF,AF⊥EF,得∠DFE為二面角D-AF-E的平面角,由CE⊥BE,BE⊥EF,得∠CEF為二面角C-BE-F的平面角.從而∠DFE=∠CEF=60°.由此能證明CD∥EF.
(3)以E為原點,建立空間直角坐標(biāo)系,利用向量法能求出二面角E-BC-A的余弦值.

解答 證明:(1)∵ABEF為正方形,∴AF⊥EF.
∵∠AFD=90°,∴AF⊥DF,
∵DF∩EF=F,
∴AF⊥平面EFDC,
∵AF?平面ABEF,
∴平面ABEF⊥平面EFDC.
(2)由AF⊥DF,AF⊥EF,
可得∠DFE為二面角D-AF-E的平面角,
由CE⊥BE,BE⊥EF,
可得∠CEF為二面角C-BE-F的平面角.
可得∠DFE=∠CEF=60°.
∵AB∥EF,AB?平面EFDC,EF?平面EFDC,
∴AB∥平面EFDC,
∵平面EFDC∩平面ABCD=CD,AB?平面ABCD,
∴AB∥CD,∴CD∥EF.
解:(3)以E為原點,建立如圖所示的坐標(biāo)系,設(shè)FD=a,
則E(0,0,0),B(0,2a,0),C($\frac{a}{2}$,0,$\frac{\sqrt{3}}{2}a$),A(2a,2a,0),
∴$\overrightarrow{EB}$=(0,2a,0),$\overrightarrow{BC}$=($\frac{a}{2}$,-2a,$\frac{\sqrt{3}a}{2}$),$\overrightarrow{AB}$=(-2a,0,0),
設(shè)平面BEC的法向量$\overrightarrow{n}$=(x1,y1,z1),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{EB}=2a{y}_{1}=0}\\{\overrightarrow{m}•\overrightarrow{BC}=\frac{a}{2}{x}_{1}-2a{y}_{1}+\frac{\sqrt{3}}{2}a{z}_{1}=0}\end{array}\right.$,取x1=$\sqrt{3}$,則$\overrightarrow{n}$=($\sqrt{3},0,-1$),
設(shè)平面ABC的法向量為$\overrightarrow{m}$=(x,y,z),
則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BC}=\frac{a}{2}x-2ay+\frac{\sqrt{3}}{2}az=0}\\{\overrightarrow{m}•\overrightarrow{AB}=2ax=0}\end{array}\right.$,取y=$\sqrt{3}$,得$\overrightarrow{m}=(0,\sqrt{3},4)$,
設(shè)二面角E-BC-A的平面角為θ.
則cosθ=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{-4}{\sqrt{4}•\sqrt{19}}$=-$\frac{2\sqrt{19}}{19}$,
∴二面角E-BC-A的余弦值為-$\frac{2\sqrt{19}}{19}$.

點評 本題考查面面垂直、線線平行的證明,考查二面角的余弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知橢圓$\frac{{x}^{2}}{m}+\frac{{y}^{2}}{n}=1(m,n$為常數(shù),m>n>0)的左、右焦點分別為F1,F(xiàn)2,P是以橢圓短軸為直徑的圓上任意一點,則$\overrightarrow{P{F}_{1}}•\overrightarrow{P{F}_{2}}$=2n-m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率$e=\frac{{\sqrt{2}}}{2}$,原點到過點A(a,0),B(0,-b)的直線的距離是$\frac{{\sqrt{6}}}{3}$.
(1)求橢圓C的方程;
(2)是否存在直線y=kx+m(k≠0)交橢圓于不同的兩點C、D,且C、D都在以B為圓心的圓上,若存在,求出m的范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知{an}是等差數(shù)列,滿足a1=1,a4=-5,數(shù)列{bn}滿足b1=1,b4=21,且{an+bn}為等比數(shù)列.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知向量$\overrightarrow{a}$=(2,1,4),$\overrightarrow$=(1,0,2),且$\overrightarrow{a}$+$\overrightarrow$與k$\overrightarrow{a}$-$\overrightarrow$互相垂直,則k的值是(  )
A.1B.$\frac{1}{5}$C.$\frac{3}{5}$D.$\frac{15}{31}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x2-(a+2)x+alnx,常數(shù)a>0
(1)當(dāng)x=1時,函數(shù)f(x)取得極小值-2,求函數(shù)f(x)的極大值
(2)設(shè)定義在D上的函數(shù)y=h(x)在點P(x0,h(x0))處的切線方程為l:y=g(x),當(dāng)x≠x0時,若$\frac{h(x)-g(x)}{{x-{x_0}}}>0$在D內(nèi)恒成立,則稱點P為h(x)的“類優(yōu)點”,若點(1,f(1))是函數(shù)f(x)的“類優(yōu)點”,
①求函數(shù)f(x)在點(1,f(1))處的切線方程
②求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.計算${({\frac{16}{9}})^{-\frac{1}{2}}}+{3^{{{log}_3}\frac{1}{4}}}-lg5+\sqrt{{{({lg2})}^2}-lg4+1}$其結(jié)果是( 。
A.-1B.1C.-3D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.函數(shù)f(x)是y=3x的反函數(shù),則函數(shù)f(1)=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知x,y∈R,且x>y>0,則( 。
A.tanx-tany>0B.xsinx-ysiny>0C.lnx+lny>0D.2x-2y>0

查看答案和解析>>

同步練習(xí)冊答案