11.如果△A1B1C1的三個內(nèi)角的余弦值分別等于△A2B2C2的三個內(nèi)角的正弦值,則下列結(jié)論正確的是④.
①△A1B1C1和△A2B2C2都是銳角三角形
②△A1B1C1和△A2B2C2都是鈍角三角形
③△A1B1C1是鈍角三角形,△A2B2C2是銳角三角形
④△A1B1C1是銳角三角形,△A2B2C2是鈍角三角形.

分析 首先根據(jù)正弦、余弦在(0,π)內(nèi)的符號特征,確定△A1B1C1是銳角三角形;
然后假設(shè)△A2B2C2是銳角三角形,則由cosα=sin($\frac{π}{2}$-α)推導(dǎo)出矛盾;
再假設(shè)△A2B2C2是直角三角形,易于推出矛盾;
最后得出△A2B2C2是鈍角三角形的結(jié)論.

解答 解:因為△A2B2C2的三個內(nèi)角的正弦值均大于0,
所以△A1B1C1的三個內(nèi)角的余弦值也均大于0,則△A1B1C1是銳角三角形.
若△A2B2C2是銳角三角形,由$\left\{\begin{array}{l}{\left.\begin{array}{l}{sin{A}_{2}=cos{A}_{1}=sin(\frac{π}{2}-{A}_{1})}\\{sin{B}_{2}=cos{B}_{1}=sin(\frac{π}{2}-{B}_{1})}\end{array}\right.}\\{sin{C}_{2}=cos{C}_{1}=sin(\frac{π}{2}-{C}_{1})}\end{array}\right.$,
得$\left\{\begin{array}{l}{\left.\begin{array}{l}{{A}_{2}=\frac{π}{2}-{A}_{1}}\\{{B}_{2}=\frac{π}{2}-{B}_{1}}\end{array}\right.}\\{{C}_{2}=\frac{π}{2}-{C}_{1}}\end{array}\right.$,
那么,A2+B2+C2=$\frac{π}{2}$,這與三角形內(nèi)角和是π相矛盾;
若△A2B2C2是直角三角形,不妨設(shè)A2=$\frac{π}{2}$,
則sinA2=1=cosA1,所以A1在(0,π)范圍內(nèi)無值.
所以△A2B2C2是鈍角三角形.
故答案為:④.

點評 本題主要考查正余弦函數(shù)在各象限的符號特征及誘導(dǎo)公式,同時考查反證法思想,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

1.若函數(shù)f(x)同時滿足:
①對于定義域上的任意x,恒有f(x)+f(-x)=0
②對于定義域上的任意x1,x2,當x1≠x2時,恒有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}<0$,則稱函數(shù)f(x)為“理想函數(shù)”.
給出下列四個函數(shù)中:
①$f(x)=\frac{1}{x}$;
②f(x)=x2; 
③f(x)=-x;
④$f(x)=\left\{{\begin{array}{l}{-{x^2}}&{x≥0}\\{{x^2}}&{x<0}\end{array}}\right.$
能被稱為“理想函數(shù)”的有( 。﹤.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.圓的極坐標方程為ρ=2(cosθ+sinθ),則該圓的圓心極坐標是( 。
A.$({1,\frac{π}{4}})$B.($\sqrt{2}$,$\frac{π}{4}$)C.($\frac{1}{2}$,$\frac{π}{4}$)D.$({2,\frac{π}{4}})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.橢圓$\frac{x^2}{9}$+$\frac{y^2}{4}$=1上一點M到直線x+2y-10=0的距離的最小值為(  )
A.2B.$\sqrt{5}$C.2$\sqrt{5}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知點P(x,y)在圓C:x2+(y-1)2=1上運動,則 $\frac{y-1}{x-2}$的取值范圍是[-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.設(shè)函數(shù)f(x)=$\overrightarrow m$•$\overrightarrow n$,其中向量$\overrightarrow m$=(2cosx,1),$\overrightarrow n$=(cosx,$\sqrt{3}$sin2x),x∈R.
(1)求f(x)的最小正周期與單調(diào)遞減區(qū)間;
(2)在△ABC中,a、b、c分別是角A、B、C的對邊,已知f(A)=2,b=1,△ABC的面積為$\frac{{\sqrt{3}}}{2}$,求a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知10件產(chǎn)品中有3件次品,從中任取2件,取到次品的件數(shù)為隨機變量,用X表示,那么X的取值為( 。
A.0,1B.0,2C.1,2D.0,1,2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知f(x+1)=x2-x,則f(x)=x2-3x+2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如圖,U是全集,M、P、S是U的3個子集,則陰影部分所表示的集合是( 。
A.(M∩P)∩SB.(M∩P)∪SC.(M∩P)∩∁USD.(M∩P)∪∁US

查看答案和解析>>

同步練習冊答案