設(shè)P為曲線C:y=x3-x上的點(diǎn),則曲線C在點(diǎn)P處的切線傾斜角取值范圍為   
【答案】分析:利用導(dǎo)數(shù)的幾何意義求出切線的斜率,再利用正切函數(shù)的單調(diào)性即可求出傾斜角的取值范圍.
解答:解:設(shè)切點(diǎn)P(x,y),過(guò)此點(diǎn)的切線的傾斜角為α.
∵f(x)=3x2-1,∴,(x∈R).

∵0≤α<π,∴α∈
故答案為α∈
點(diǎn)評(píng):熟練掌握導(dǎo)數(shù)的幾何意義和正切函數(shù)的單調(diào)性是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P為曲線C:y=x2-x+1上一點(diǎn),曲線C在點(diǎn)P處的切線的斜率的范圍是[-1,3],則點(diǎn)P縱坐標(biāo)的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)P為曲線C:y=
1
3
x3-x2+x
上的點(diǎn),且曲線C在點(diǎn)P處切線傾斜角的取值范圍為[0,
π
4
]
,則點(diǎn)P橫坐標(biāo)的取值范圍為
[0,2]
[0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•香洲區(qū)模擬)設(shè)P為曲線C:y=x3-x上的點(diǎn),則曲線C在點(diǎn)P處的切線傾斜角取值范圍為
[0,
π
2
)∪[
3
4
π,π)
[0,
π
2
)∪[
3
4
π,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年安徽師大附中高考數(shù)學(xué)五模試卷(文科)(解析版) 題型:解答題

設(shè)P為曲線C:y=x2-x+1上一點(diǎn),曲線C在點(diǎn)P處的切線的斜率的范圍是[-1,3],則點(diǎn)P縱坐標(biāo)的取值范圍是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年江蘇省常州高級(jí)中學(xué)高三(下)調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)P為曲線C:y=x2-x+1上一點(diǎn),曲線C在點(diǎn)P處的切線的斜率的范圍是[-1,3],則點(diǎn)P縱坐標(biāo)的取值范圍是   

查看答案和解析>>

同步練習(xí)冊(cè)答案