已知數(shù)列{an}中,數(shù)學(xué)公式
(1)求數(shù)列{an}的通項公式an;
(2)求數(shù)列{n2an}的前n項和Tn
(3)若存在n∈N*,使關(guān)于n的不等式an≤(n+1)λ成立,求常數(shù)λ的最小值.

解:(1)因為
所以-------(1分)
兩式相減得
所以------------(2分)
因此數(shù)列{nan}從第二項起,是以2為首項,以3為公比的等比數(shù)列
所以----(3分)
------------(4分)
(2)由(1)可知當(dāng)n≥2
當(dāng)n≥2時,,------------(5分)
,------------(6分)
兩式相減得------------(7分)
又∵T1=a1=1也滿足上式,------------(8分)
所以------------(9分)
(3)an≤(n+1)λ等價于,------------(10分)
由(1)可知當(dāng)n≥2時,
設(shè),則,------------(12分)
,
,∴所求實數(shù)λ的取值范圍為
-----(14分)
分析:(1)再寫一式,兩式相減,可得數(shù)列{nan}從第二項起,是以2為首項,以3為公比的等比數(shù)列,從而可求數(shù)列{an}的通項公式an;
(2)利用錯位相減法,可求數(shù)列{n2an}的前n項和Tn
(3)分離參數(shù),求出相應(yīng)的最值,即可求常數(shù)λ的最小值.
點評:本題考查數(shù)列的通項與求和,考查恒成立問題,考查學(xué)生的計算能力,正確求數(shù)列的通項是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,則
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=
an
1+2an
,則{an}的通項公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{
2n
an
}
的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=
1
2
,Sn
為數(shù)列的前n項和,且Sn
1
an
的一個等比中項為n(n∈N*
),則
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,2nan+1=(n+1)an,則數(shù)列{an}的通項公式為( 。
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步練習(xí)冊答案