3.已知an=2n-1(n∈N*),則$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{9}{a}_{10}}$=$\frac{9}{19}$.

分析 $\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.利用裂項(xiàng)求和方法即可得出.

解答 解:$\frac{1}{{a}_{n}{a}_{n+1}}$=$\frac{1}{(2n-1)(2n+1)}$=$\frac{1}{2}(\frac{1}{2n-1}-\frac{1}{2n+1})$.
∴$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{{a}_{2}{a}_{3}}$+…+$\frac{1}{{a}_{9}{a}_{10}}$=$\frac{1}{2}[(1-\frac{1}{3})+(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2×9-1}-\frac{1}{2×9+1})]$=$\frac{1}{2}(1-\frac{1}{19})$=$\frac{9}{19}$.
故答案為:$\frac{9}{19}$.

點(diǎn)評(píng) 本題考查了裂項(xiàng)求和方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知△ABC是邊長(zhǎng)為4的等邊三角形,P為平面ABC內(nèi)一點(diǎn),則$\overrightarrow{PA}•(\overrightarrow{PB}+\overrightarrow{PC})$的最小值是(  )
A.-2B.$-\frac{3}{2}$C.-3D.-6 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x2-(m+1)x+m,g(x)=-(m+4)x-4+m,m∈R.
(1)比較f(x)與g(x)的大小;
(2)解不等式f(x)≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知集合A={x|(x+2m)(x-m+4)<0},其中m∈R,集合B={x|$\frac{1-x}{x+2}$>0}.
(1)若B⊆A,求實(shí)數(shù)m的取值范圍;
(2)若A∩B=∅,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=e2x+1-2mx-$\frac{3}{2}$m,其中m∈R,e為自然對(duì)數(shù)底數(shù).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若不等式f(x)≥n對(duì)任意x∈R都成立,求m•n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)等差數(shù)列{an}前n項(xiàng)和為Sn,且滿足a2=2,S5=15;等比數(shù)列{bn}滿足b2=4,b5=32.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)求數(shù)列{anbn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)集合A={x|y=log2(3-x)},B={y|y=2x,x∈[0,2]}則A∩B=( 。
A.[0,2]B.(1,3)C.[1,3)D.(1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖點(diǎn)G是三角形ABO的重心,PQ是過G的分別交OA,OB于P,Q的一條線段,且OP=mOA,OQ=nOB,(m,n∈R).求證$\frac{1}{m}$+$\frac{1}{n}$=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在極坐標(biāo)系中,曲線C1:ρsin2θ=4cosθ,以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸正半軸建立直角坐標(biāo)系xOy,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù)).
(1)求C1、C2的直角坐標(biāo)方程;
(2)若曲線C1與曲線C2交于A、B兩點(diǎn),且定點(diǎn)P的坐標(biāo)為(2,0),求|PA|•|PB|的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案