計算:log2100×log0.12=
 
考點:對數(shù)的運算性質(zhì)
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:應(yīng)用對數(shù)換底公式即可化簡求值.
解答: 解:log2100×log0.12
=
lg100
lg2
×
lg2
lg0.1

=-2.
故答案為:-2.
點評:本題主要考察了對數(shù)的運算性質(zhì),考察了換底公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z1=1+bi,z2=-2+i,若
z1
z2
的對應(yīng)點位于直線x+y=0上,則實數(shù)b的值為(  )
A、-3
B、3
C、-
1
3
D、
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=
1
3
,則cos(π+2α)的值為( 。
A、
7
9
B、-
7
9
C、
2
9
D、-
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x<-2或x>3},B={x|log4(x+a)<1},若A∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

化簡下列各式:
(1)
a
1
2
-b
1
2
a
1
2
+b
1
2
+
a
1
2
+b
1
2
a
1
2
-b
1
2
;
(2)(a2-2+a-2)÷(a2-a-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算:
2lg(lga100)
2+lg(lga)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)對定義域D的每一個x1,都存在唯一的x2∈D,使f(x1)f(x2)=1成立,則稱f(x)為“自倒函數(shù)”,下列命題正確的是
 
.(把你認(rèn)為正確自倒函數(shù)命題的序號都填上)
(1)f(x)=sinx+
2
(x∈[-
π
2
,
π
2
])是自倒函數(shù);  
(2)自倒函數(shù)f(x)的值域可以是R;
(3)自倒函數(shù)f(x)的可以是奇函數(shù);
(4)若y=f(x),y=g(x)都是自倒函數(shù),且定義域相同,則y=f(x)•g(x)是自倒函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓C與y軸相切于點T(0,2),與x軸正半軸相交于兩點M,N(點M在點N的左側(cè)),且|MN|=3.
(Ⅰ)求圓C的方程;
(Ⅱ)過點M任作一條直線與橢圓Γ:
x2
4
+
y2
8
=1相交于兩點A、B,連接
AN、BN,求證:∠ANM=∠BNM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD的底面ABCD為等腰梯形,AB∥DC,AC⊥BD,AC與BD相交于點O,且頂點P在底面上的射影恰為O點,又BO=2,PO=
2
,PB⊥PD.
(1)求異面直接PD與BC所成角的余弦值;
(2)求二面角P-AB-C的大;
(3)設(shè)點M在棱PC上,且
PM
PC
=λ,問λ為何值時,PC⊥平面BMD.

查看答案和解析>>

同步練習(xí)冊答案