(1)已知函數(shù)m(x)=ax2e-x (a>0),求證:函數(shù)y=m(x)在區(qū)間[2,+∞)上為減函數(shù).
(2)已知函數(shù)f(x)=ax2+2ax,g(x)=ex,若在(0,+∞)上至少存在一點x,使得f(x)>g(x)成立,求實數(shù)a的取值范圍.
【答案】分析:(1)欲證函數(shù)y=m(x)在區(qū)間[2,+∞)上為減函數(shù),求出導(dǎo)函數(shù)f′(x),只須證明f′(x)<0即可;
(2)欲在(0,+∞)上至少存在一點x,使f(x)>g(x)成立,只需f(x)=的最大值大于1,建立不等關(guān)系,解之即可.
解答:解:(1)m'(x)=axe-x(2-x),而ax>0,∴當(dāng)x>2時,m'(x)<0,因此m(x)在[2,+∞)上為減函數(shù).
(2)記m(x)=,則m'(x)=(-ax2+2a)e-x,
當(dāng)x>時,m'(x)<0 當(dāng)0<x<時,m'(x)>0
故m(x)在x=時取最大值,同時也為最大值.m(x)max=m()=
依題意,要在(0,+∞)上存在一點x,使f(x)>g(x)成立.即使m(x)>1只需m()>1
>1∴,因此,所求實數(shù)a的取值范圍為(,+∞)
點評:本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值等基礎(chǔ)知識,考查運算求解能力,考查化歸與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知函數(shù)f(x)=|x-2|+|x-4|的最小值為m,實數(shù)a,b,c,n,p,q
滿足a2+b2+c2=n2+p2+q2=m.
(Ⅰ)求m的值;     (Ⅱ)求證:
n4
a2
+
p4
b2
+
q4
c2
≥2

(2)已知在直角坐標系xOy中,曲線C的參數(shù)方程為
x=2tcosθ
y=2sinθ
(t為非零常數(shù),θ為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,直線l的方程為ρsin(θ-
π
4
)=2
2

(Ⅰ)求曲線C的普通方程并說明曲線的形狀;
(Ⅱ)是否存在實數(shù)t,使得直線l與曲線C有兩個不同的公共點A、B,且
OA
OB
=10
(其中O為坐標原點)?若存在,請求出;否則,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浦東新區(qū)二模)已知函數(shù)y=f(x),x∈D,如果對于定義域D內(nèi)的任意實數(shù)x,對于給定的非零常數(shù)m,總存在非零常數(shù)T,恒有f(x+T)>m•f(x)成立,則稱函數(shù)f(x)是D上的m級類增周期函數(shù),周期為T.若恒有f(x+T)=m•f(x)成立,則稱函數(shù)f(x)是D上的m級類周期函數(shù),周期為T.
(1)已知函數(shù)f(x)=-x2+ax是[3,+∞)上的周期為1的2級類增周期函數(shù),求實數(shù)a的取值范圍;
(2)已知 T=1,y=f(x)是[0,+∞)上m級類周期函數(shù),且y=f(x)是[0,+∞)上的單調(diào)遞增函數(shù),當(dāng)x∈[0,1)時,f(x)=2x,求實數(shù)m的取值范圍;
(3)下面兩個問題可以任選一個問題作答,如果你選做了兩個,我們將按照問題(Ⅰ)給你記分.
(Ⅰ)已知當(dāng)x∈[0,4]時,函數(shù)f(x)=x2-4x,若f(x)是[0,+∞)上周期為4的m級類周期函數(shù),且y=f(x)的值域為一個閉區(qū)間,求實數(shù)m的取值范圍;
(Ⅱ)是否存在實數(shù)k,使函數(shù)f(x)=coskx是R上的周期為T的T級類周期函數(shù),若存在,求出實數(shù)k和T的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•武漢模擬)(1)已知函數(shù)m(x)=ax2e-x (a>0),求證:函數(shù)y=m(x)在區(qū)間[2,+∞)上為減函數(shù).
(2)已知函數(shù)f(x)=ax2+2ax,g(x)=ex,若在(0,+∞)上至少存在一點x0,使得f(x0)>g(x0)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:武漢模擬 題型:解答題

(1)已知函數(shù)m(x)=ax2e-x (a>0),求證:函數(shù)y=m(x)在區(qū)間[2,+∞)上為減函數(shù).
(2)已知函數(shù)f(x)=ax2+2ax,g(x)=ex,若在(0,+∞)上至少存在一點x0,使得f(x0)>g(x0)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案