(2012•煙臺(tái)一模)已知向量
a
=(-
1
2
cosx,-x)
,
b
=(1,t),若函數(shù)f(x)=
a
b
在區(qū)間(0,
π
2
)
上存在增區(qū)間,則t的取值范圍
(-∞,
1
2
)
(-∞,
1
2
)
分析:函數(shù)f(x)=
a
b
在區(qū)間(0,
π
2
)
上存在增區(qū)間,轉(zhuǎn)化為函數(shù)的導(dǎo)數(shù)在區(qū)間上有大于0的區(qū)間,通過函數(shù)的最大值求解t的范圍.
解答:解:函數(shù)f(x)=
a
b
=-
1
2
cosx-tx
,函數(shù)f(x)=
a
b
在區(qū)間(0,
π
2
)
上存在增區(qū)間,
所以函數(shù)f′(x)=
1
2
sinx
-t,在區(qū)間(0,
π
2
)
上有
1
2
sinx
-t>0成立的區(qū)間,
即t
1
2
sinx
,∵x∈(0,
π
2
)
,∴sinx<1,
1
2
sinx<
1
2

t
1
2

故答案為:(-∞,
1
2
)
點(diǎn)評(píng):本題考查向量的數(shù)量積,函數(shù)的導(dǎo)數(shù)的應(yīng)用,考查轉(zhuǎn)化思想計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•煙臺(tái)一模)函數(shù)y=
ln|x|
x
的圖象大致是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•煙臺(tái)一模)定義在R上的函數(shù)f(x)=ax3+bx2+cx+3同時(shí)滿足以下條件:
①f(x)在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù); 
②f′(x)是偶函數(shù);
③f(x)在x=0處的切線與直線y=x+2垂直.
(Ⅰ)求函數(shù)y=f(x)的解析式;
(Ⅱ)設(shè)g(x)=4lnx-m,若存在x∈[1,e],使g(x)<f′(x),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•煙臺(tái)一模)若變量x,y滿足約束條件
x≥1
y≥x
3x+2y≤15
則w=log3(2x+y)的最大值為
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•煙臺(tái)一模)已知命題p:“a=1是x>0,x+
a
x
≥2的充分必要條件”,命題q:“存在x0∈R,x02+x0-2>0”,則下列命題正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•煙臺(tái)一模)已知f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí)f(x)=3x+m(m為常數(shù)),則f(-log35)的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案