(本小題滿(mǎn)分16分)
已知數(shù)列滿(mǎn)足,
(1)求證:數(shù)列為等比數(shù)列  (2)求數(shù)列的通項(xiàng)公式
(3)試問(wèn):數(shù)列中是否存在不同的三項(xiàng)恰好成等差數(shù)列?若存在,求出這三項(xiàng);若不存在,請(qǐng)說(shuō)明理由.
(1) ∵,∴
所以是以為首項(xiàng),2為公比的等比數(shù)列....5分
(2)  。保胺
(3)中不存在不同的三項(xiàng)恰好成等差數(shù)列.

試題分析:(1)由,得,
根據(jù)等比數(shù)列的定義可知是等比數(shù)列.
(2)在(1)的基礎(chǔ)上,可求出
(3)解本小題的關(guān)鍵:假設(shè)數(shù)列中存在不同的三項(xiàng)恰好成等差數(shù)列,顯然是遞增數(shù)列,然后可設(shè),則,進(jìn)而得到,
然后再根據(jù)p,q,r取正整數(shù)值,并且還要從奇偶性判斷是否存在.
(1) ∵,∴
所以是以為首項(xiàng),2為公比的等比數(shù)列....5分
(2)  。保胺
(3)若數(shù)列中存在不同的三項(xiàng)恰好成等差數(shù)列,顯然是遞增數(shù)列,不妨設(shè),則
,化簡(jiǎn)得:
……(*)................14分
由于,且,知≥1,≥2,
所以(*)式左邊為偶數(shù),右邊為奇數(shù),  故數(shù)列中不存在不同的三項(xiàng)恰好成等差數(shù)列..16分
點(diǎn)評(píng):等比數(shù)列的定義是判定一個(gè)數(shù)列是否是等比數(shù)列的依據(jù),勿必理解掌握.對(duì)于探索性問(wèn)題可先假設(shè)存在,然后根據(jù)條件探索存在應(yīng)滿(mǎn)足的條件,從而最終得出結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)列中,,,數(shù)列是公比為)的等比數(shù)列。
(Ⅰ)求使成立的的取值范圍;(Ⅱ)求數(shù)列的前項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等比數(shù)列的公比為正數(shù),且=2,=1,則=(   )
A.B.C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
若等比數(shù)列的前項(xiàng)和為,,求數(shù)列的通項(xiàng)公式。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分16分)數(shù)列{an}的前n項(xiàng)和為Sn(n∈N*),點(diǎn)(an,Sn)在直線y=2x-3n上.
(1)若數(shù)列{an+c}成等比數(shù)列,求常數(shù)c的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)數(shù)列{an}中是否存在三項(xiàng),它們可以構(gòu)成等差數(shù)列?若存在,請(qǐng)求出一組適合條件的項(xiàng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等比數(shù)列中,已知,且為遞增數(shù)列,
________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在等比數(shù)列中,已知,則該數(shù)列的前12項(xiàng)的和為        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在等比數(shù)列{an}中,=1,=3,則的值是         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在等比數(shù)列中,,則數(shù)列的第4項(xiàng)為
A.B.81C.-81D.81或-81

查看答案和解析>>

同步練習(xí)冊(cè)答案