【題目】在平面直角坐標(biāo)系中,已知橢圓:的右頂點(diǎn)與拋物線:的焦點(diǎn)重合,其離心率.過作兩條相互垂直的直線與,且交拋物線于,兩點(diǎn),交橢圓于另一點(diǎn).
(1)求的值;
(2)求面積的最小值.
【答案】(1);(2).
【解析】
(1)由拋物線的方程可得焦點(diǎn)的坐標(biāo),由題意可得橢圓的值,再由離心率可得的值,再由之間的關(guān)系求出的值,進(jìn)而求出橢圓的方程;由題意可得直線的斜率不為,設(shè)直線的方程與拋物線聯(lián)立求出兩根之積,進(jìn)而求出數(shù)量積 的值;
(2)由(1)可得弦長表達(dá)式,當(dāng)直線垂直于軸時,由題意可得直線為軸,與橢圓的另一個交點(diǎn)為橢圓的左頂點(diǎn),求出三角形的面積,當(dāng)直線不垂直于軸時,設(shè)直線的方程與橢圓聯(lián)立求出的坐標(biāo),由面積公式可得面積的表達(dá)式,換元,求導(dǎo),由函數(shù)的單調(diào)性求出三角形面積的最小值.
(1)由拋物線的方程可得焦點(diǎn),由題意可得橢圓的右頂點(diǎn)的坐標(biāo)為即, 又離心率,可得,所以,
所以橢圓的方程為:,
由交拋物線于兩點(diǎn)可得直線的斜率不為,
設(shè)的方程為:,設(shè),
直線與拋物線聯(lián)立,整理可得,
所以,
所以;
(2)由(1)知
,
當(dāng)時, ,由題意可得,所以;
當(dāng),設(shè)直線的方程為: ,代入橢圓的方程可得,
可得,
所以, 令,則,
令,
令,可得,
當(dāng),,單調(diào)遞減,
當(dāng),,單調(diào)遞增,
所以,
故,當(dāng)且僅當(dāng)時取等號,
綜上所述面積的最小值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠的某種產(chǎn)品成箱包裝,每箱200件,每一箱產(chǎn)品在交付用戶之前要對產(chǎn)品作檢驗(yàn),如檢驗(yàn)出不合格品,則更換為合格品.檢驗(yàn)時,先從這箱產(chǎn)品中任取20件作檢驗(yàn),再根據(jù)檢驗(yàn)結(jié)果決定是否對余下的所有產(chǎn)品作檢驗(yàn),設(shè)每件產(chǎn)品為不合格品的概率都為,且各件產(chǎn)品是否為不合格品相互獨(dú)立.
(1)記20件產(chǎn)品中恰有2件不合格品的概率為,求的最大值點(diǎn).
(2)現(xiàn)對一箱產(chǎn)品檢驗(yàn)了20件,結(jié)果恰有2件不合格品,以(1)中確定的作為的值.已知每件產(chǎn)品的檢驗(yàn)費(fèi)用為2元,若有不合格品進(jìn)入用戶手中,則工廠要對每件不合格品支付25元的賠償費(fèi)用.
(i)若不對該箱余下的產(chǎn)品作檢驗(yàn),這一箱產(chǎn)品的檢驗(yàn)費(fèi)用與賠償費(fèi)用的和記為,求;
(ii)以檢驗(yàn)費(fèi)用與賠償費(fèi)用和的期望值為決策依據(jù),是否該對這箱余下的所有產(chǎn)品作檢驗(yàn)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年1月底因新型冠狀病毒感染的肺炎疫情形勢嚴(yán)峻,避免外出是減少相互交叉感染最有效的方式.在家中適當(dāng)鍛煉,合理休息,能夠提高自身免疫力,抵抗該種病毒.某小區(qū)為了調(diào)查“宅”家居民的運(yùn)動情況,從該小區(qū)隨機(jī)抽取了100位成年人,記錄了他們某天的鍛煉時間,其頻率分布直方圖如下:
(1)求a的值,并估計這100位居民鍛煉時間的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值代表);
(2)小張是該小區(qū)的一位居民,他記錄了自己“宅”家7天的鍛煉時長:
序號n | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
鍛煉時長m(單位:分鐘) | 10 | 15 | 12 | 20 | 30 | 25 | 35 |
(Ⅰ)根據(jù)數(shù)據(jù)求m關(guān)于n的線性回歸方程;
(Ⅱ)若(是(1)中的平均值),則當(dāng)天被稱為“有效運(yùn)動日”.估計小張“宅”家第8天是否是“有效運(yùn)動日”?
附;在線性回歸方程中,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在傳染病學(xué)中,通常把從致病刺激物侵入機(jī)體或者對機(jī)體發(fā)生作用起,到機(jī)體出現(xiàn)反應(yīng)或開始呈現(xiàn)該疾病對應(yīng)的相關(guān)癥狀時止的這一階段稱為潛伏期.
(1)一研究團(tuán)隊統(tǒng)計了某地區(qū)1000名患者的相關(guān)信息,得到如下表格,
該傳染病的潛伏期受諸多因素影響,為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否超過6天為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述1000名患者中抽取200人,得到如下列聯(lián)表,請將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有95%的把握認(rèn)為潛伏期與患者年齡有關(guān)
潛伏期≤6天 | 潛伏期>6天 | 總計 | |
50歲以上(含50歲) | 100 | ||
50歲以下 | 55 | ||
總計 | 200 |
(2)以這1000名患者的潛伏期超過6天的頻率,代替該地區(qū)1名患者潛伏期超過6天發(fā)生的概率,每名患者的潛伏期是否超過6天相互獨(dú)立.為了深入研究,該研究團(tuán)隊隨機(jī)調(diào)查了20名患者,其中潛伏期超過6天的人數(shù)最有可能(即概率最大)是多少?
附:下面的臨界值表僅供參考.
0.05 | 0.025 | 0.010 | |
3.841 | 5.024 | 6.635 |
(參考公式:,其中.)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的右焦點(diǎn)為,過焦點(diǎn),斜率為的直線交橢圓于、兩點(diǎn)(異于長軸端點(diǎn)),是直線上的動點(diǎn).
(1)若直線平分線段,求證:.
(2)若直線的斜率,直線、、的斜率成等差數(shù)列,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),(),
(1)討論函數(shù)的單調(diào)區(qū)間;
(2)若當(dāng)時的圖象總在函數(shù)的圖象的下方,求正實(shí)數(shù)t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com