分析 (1)通過(guò)當(dāng)n=k時(shí)Sn=-$\frac{1}{2}$n2+kn取得最大值可知k=4,當(dāng)n≥2時(shí)利用an=Sn-Sn-1,進(jìn)而計(jì)算可得結(jié)論;
(2)通過(guò)(1),分組求和,進(jìn)而相加即得結(jié)論.
解答 解:(1)當(dāng)n=k時(shí)Sn=-$\frac{1}{2}$n2+kn取得最大值,
此時(shí)8=-$\frac{1}{2}$k2+k2,即k2=16,
又∵k∈N+,
∴k=4,
∴Sn=-$\frac{1}{2}$n2+4n,
當(dāng)n≥2時(shí),an=Sn-Sn-1
=(-$\frac{1}{2}$n2+4n)-[-$\frac{1}{2}$n(-1)2+4(n-1)]
=-n+$\frac{9}{2}$,
又∵a1=S1=-$\frac{1}{2}$+4=$\frac{7}{2}$滿足上式,
∴an=-n+$\frac{9}{2}$;
(2)由(1)可知bn=an+2n=-n+$\frac{9}{2}$+2n,
∴Tn=$\frac{9}{2}$n-$\frac{n(n+1)}{2}$+$\frac{2(1-{2}^{n})}{1-2}$
=$\frac{9}{2}$n-$\frac{1}{2}$n2-$\frac{1}{2}$n+2n+1-2
=2n+1-$\frac{1}{2}$n2+4n-2.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)及前n項(xiàng)和,考查運(yùn)算求解能力,考查分組法求數(shù)列的和,注意解題方法的積累,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{4\sqrt{5}}{5}$ | B. | 2 | C. | 4 | D. | 2$\sqrt{5}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com