已知
a
=(1,k),
b
=(k,4),那么“k=-2”是“
a
,
b
共線”的( 。
A、充分非必要條件
B、必要非充分條件
C、非充分非必要條件
D、充要條件
考點(diǎn):必要條件、充分條件與充要條件的判斷
專(zhuān)題:簡(jiǎn)易邏輯
分析:根據(jù)向量共線的等價(jià)條件,利用充分條件和必要條件的定義進(jìn)行判定即可.
解答: 解:若k=-2,則
a
=(1,-2),
b
=(-2,4),滿足
b
=-2
a
,即
a
,
b
共線,充分性成立,
a
b
共線,則k2=4,即k=±2,即必要性不成立,
故“k=-2”是“
a
,
b
共線”的充分不必要條件,
故選:A
點(diǎn)評(píng):本題主要考查充分條件和必要條件的判定,利用向量共線的等價(jià)條件是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=3,點(diǎn)列(
an
,
an-1
)(其中n∈N*,且n>1)在直線x-y-
3
=0上,則數(shù)列{an}的通項(xiàng)公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax3+bx2+cx+d(a≠0)的對(duì)稱(chēng)中心為M(x0,y0),記函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),f′(x)的導(dǎo)函數(shù)為f″(x),則有f″(x0)=0.若函數(shù)f(x)=x3-3x2,則可求得:f(
1
4
)+f(
2
4
)+f(
3
4
)+f(
4
4
)+f(
5
4
)+f(
6
4
)+f(
7
4
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)命題:
①利用計(jì)算機(jī)產(chǎn)生0~1之間的均勻隨機(jī)數(shù)a,則事件“3a-1>0”發(fā)生的概率為
1
3
;
②“x+y≠0”是“x≠1或y≠1”的充分不必要條件;
③命題“在△ABC中,若sinA=sinB,則△ABC為等腰三角形”的否命題為真命題;
④2,3,5,7,8,8這組數(shù)的極差與中位數(shù)相等
其中說(shuō)法正確的個(gè)數(shù)是( 。
A、3個(gè)B、2個(gè)C、1個(gè)D、0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在直角△ABC中,|
AB
|=|
AC
|=3,且
DC
=2
BD
,點(diǎn)P是線段AD上任一點(diǎn),則
AP
CP
的取值范圍是( 。
A、[0,
9
20
]
B、[-
9
20
,2]
C、[-
9
20
9
16
]
D、[-
9
16
,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=lg(x+
x3+1
)+sinx,當(dāng)0≤θ≤
π
2
時(shí),f(msinθ)+f(1-m)>0恒成立,則實(shí)數(shù)m的取值范圍是( 。
A、(-∞,1)
B、(-∞,0)
C、(-∞,
1
2
D、(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a,b,c為△ABC的三邊,若b2+c2-a2=bc,則
b+c
a
的取值范圍是( 。
A、(1,2]
B、(1,
3
]
C、[
3
,2]
D、(
3
,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)復(fù)數(shù)z=-3i+1,則z的共軛復(fù)數(shù)在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}的前n項(xiàng)和為Sn,且滿足
S6
S3
=9,則公比q=( 。
A、
1
2
B、±
1
2
C、2
D、±2

查看答案和解析>>

同步練習(xí)冊(cè)答案