【題目】某中學在高二年級開設大學先修課程《線性代數(shù)》,共有50名同學選修,其中男同學30名,女同學20名.為了對這門課程的教學效果進行評估,學校按性別采用分層抽樣的方法抽取5人進行考核.
(Ⅰ)求抽取的5人中男、女同學的人數(shù);
(Ⅱ)考核前,評估小組打算從抽取的5人中隨機選出2名同學進行訪談,求選出的兩名同學中恰有一名女同學的概率.
【答案】(Ⅰ)男同學的人數(shù)為3,女同學的人數(shù)為32.(Ⅱ) .
【解析】試題分析:本題主要考查分層抽樣、隨機事件的概率等基礎知識,考查學生的分析問題解決問題的能力、計算能力.第一問,利用分層抽樣中各層的“樣本容量÷總?cè)萘?/span>”均相等,求出男同學和女同學人數(shù);第二問,結(jié)合第一問的結(jié)論,將抽取的5人用字母表示出來,分別寫出5人中任取2人的情況,在總數(shù)10種中選出符合題意的6種情況,再求概率.
試題解析:(1)抽取的5人中男同學的人數(shù)為,女同學的人數(shù)為. 4分
(2)記3名男同學為,2名女同學為.從5人中隨機選出2名同學,所有可能的結(jié)果有 ,共10個. 7分
用表示:“選出的兩名同學中恰有一名女同學”這一事件,則中的結(jié)果有6個,它們是: . 10分
所以 選出的兩名同學中恰有一名女同學的概率[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2015/4/13/1572069106720768/1572069112365056/EXPLANATION/c126479f438e40f5b341b899ee0cfe87.png]. 12分
科目:高中數(shù)學 來源: 題型:
【題目】在梯形ABCD中,DC∥AB,DC⊥CB,E是AB的中點,且AB=2BC=2CD=4(如圖所示),將△ADE沿DE翻折,使AB=2(如圖所示),F是線段AD上一點,且AF=2DF.
(Ⅰ)求四棱錐A-BCDE的體積;
(Ⅱ)在線段BE上是否存在一點G,使EF∥平面ACG?若存在,請指出點G的位置,并證明你的結(jié)論;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學在一次研究性學習中發(fā)現(xiàn),以下五個式子的值都等于同一個常數(shù):
①sin213°+cos217°﹣sin13°cos17°;
②sin215°+cos215°﹣sin15°cos15°;
③sin218°+cos212°﹣sin18°cos12°;
④sin2(﹣18°)+cos248°﹣sin(﹣18°)cos48°
⑤sin2(﹣25°)+cos255°﹣sin(﹣25°)cos55°
(Ⅰ)試從上述五個式子中選擇一個,求出這個常數(shù);
(Ⅱ)根據(jù)(Ⅰ)的計算結(jié)果,將該同學的發(fā)現(xiàn)推廣為一三角恒等式sin2α+cos2(30°﹣α)﹣sinαcos(30°﹣α)= ,并證明你的結(jié)論.
(參考公式:sin(α±β)=sinαcosβ±cosαsinβ,cos(α±β)=cosαcosβsinαsinβsin2α=2sinαcosα,cos2α=cos2α﹣sin2α=2cos2α﹣1=1﹣2sin2α)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個三棱錐的三視圖是三個直角三角形,如圖所示,則該三棱錐的外接球的表面積為__________.
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922378615128064/1923439395438592/STEM/3d69fcdc50254164a6fb81896ba4fb1c.png]
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某校組織的高二女子排球比賽中,有、兩個球隊進入決賽,決賽采用7局4勝制.假設、兩隊在每場比賽中獲勝的概率都是.并記需要比賽的場數(shù)為.
(Ⅰ)求大于4的概率;
(Ⅱ)求的分布列與數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求方程的解集;
(2)若關于x的方程在上恒有解,求m的取值范圍;
(3)若不等式在上恒成立,求m的取值范圍;
(4)若關于x的方程在上有解,那么當m取某一確定值時,方程所有解的和記為,求所有可能值及相應的m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形中,.直角梯形通過直角梯形以直線為軸旋轉(zhuǎn)得到,且使得平面平面.
(Ⅰ)求證:平面平面;
(Ⅱ)延長至點,使為平面內(nèi)的動點,若直線與平面所成的角為,且,求點到點的距離的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com