分析 由條件利用同角三角函數(shù)的基本關系求得sin($\frac{π}{4}$-α)和cos($\frac{π}{4}$+β)的值,再利用兩角差的正弦公式,求得sin(α+β)的值.
解答 解:∵α∈($\frac{π}{4}$,$\frac{3π}{4}$),β∈(0,$\frac{π}{4}$),cos($\frac{π}{4}$-α)=$\frac{3}{5}$,∴sin($\frac{π}{4}$-α)=-$\sqrt{{1-cos}^{2}(\frac{π}{4}-α)}$=-$\frac{4}{5}$.
由$\frac{π}{4}$+β∈($\frac{π}{4}$,$\frac{π}{2}$),sin($\frac{π}{4}$+β)=$\frac{12}{13}$,可得cos($\frac{π}{4}$+β)=$\frac{5}{13}$,
∴sin(α+β)=sin[($\frac{π}{4}$+β)-($\frac{π}{4}$-α)]=sin($\frac{π}{4}$+β)cos($\frac{π}{4}$-α)-cos($\frac{π}{4}$+β)sin($\frac{π}{4}$-α)
=$\frac{12}{13}•\frac{3}{5}$-$\frac{5}{13}•(-\frac{4}{5})$=$\frac{56}{65}$.
點評 本題主要考查同角三角函數(shù)的基本關系,兩角差的正弦公式的應用,屬于基礎題.
科目:高中數(shù)學 來源:2017屆廣西南寧二中等校高三8月聯(lián)考數(shù)學(文)試卷(解析版) 題型:解答題
選修4-4:坐標系與參數(shù)方程
已知直線(為參數(shù)),圓,以坐標原點為極點,軸的正半軸為極軸建立直角坐標系.
(1)求圓的極坐標方程,直線的極坐標方程;
(2)設與的交點為,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{4}$-$\frac{\sqrt{3}}{4}$i | B. | $\frac{3}{2}$-$\frac{\sqrt{3}}{2}$i | C. | $\frac{3}{4}$+$\frac{\sqrt{3}}{4}$i | D. | $\frac{3}{2}$+$\frac{\sqrt{3}}{2}$i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com