A. | $\frac{2\sqrt{3}}{5}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{4}{5}$ | D. | $\frac{2}{3}$ |
分析 根據(jù)基本不等式可得x2+$\frac{1}{2}$y2≥$\sqrt{2}$xy,z2+$\frac{1}{2}$y2≥$\sqrt{2}$yz,問題得以解決.
解答 解:x2+$\frac{1}{2}$y2≥$\sqrt{2}$xy,z2+$\frac{1}{2}$y2≥$\sqrt{2}$yz,
∴x2+y2+z2≥$\sqrt{2}$xy+$\sqrt{2}$yz=$\sqrt{2}$(xy+yz),
∴$\frac{xy+yz}{{x}^{2}+{y}^{2}+{z}^{2}}$≤$\frac{\sqrt{2}}{2}$,當(dāng)且僅當(dāng)x=z=$\frac{\sqrt{2}}{2}$y時(shí)取等號(hào),
故$\frac{xy+yz}{{x}^{2}+{y}^{2}+{z}^{2}}$的最大值為$\frac{\sqrt{2}}{2}$,
故選:B
點(diǎn)評(píng) 本題主要考查基本不等式的應(yīng)用,注意檢驗(yàn)等號(hào)成立的條件,式子的變形是解題的關(guān)鍵,屬于基礎(chǔ)題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-4sin($\frac{π}{8}$x-$\frac{π}{4}$) | B. | y=-4sin($\frac{π}{8}$x+$\frac{π}{4}$) | C. | y=4sin($\frac{π}{8}$x-$\frac{π}{4}$) | D. | y=4sin($\frac{π}{8}$x+$\frac{π}{4}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com