如圖所示,正方形ABCD和正方形ADEF中,M、N分別是對(duì)角線BD和AE上的點(diǎn),且BM=AN.求證:MN∥平面CDF.

答案:略
解析:

證明:如圖,過(guò)MMGCDG,過(guò)NNHDEH,連結(jié)GH、CF

MGCD,BCCD

MGBCAD

同理NHAD,且

又∵ABCDADEF為正方形,且BM=AN,

∴四邊形MGHN為平行四邊形.

MNGH

GHCDEMNCDE

MN∥平面CDE


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,正方形ADEF與梯形ABCD所在的平面互相垂直,AD⊥CD,AB∥CD,CD=2AB=2AD.
(Ⅰ)求證:BC⊥BE;
(Ⅱ)在EC上找一點(diǎn)M,使得BM∥平面ADEF,請(qǐng)確定M點(diǎn)的位置,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,直線AB的方程為6x-3y-4=0,向邊長(zhǎng)為2的正方形內(nèi)隨機(jī)地投飛鏢,飛鏢都能投入正方形內(nèi),且投到每個(gè)點(diǎn)的可能性相等,則飛鏢落在陰影部分(三角形ABC的內(nèi)部)的概率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•昌平區(qū)二模)如圖所示,正方形AA1D1D與矩形ABCD所在平面互相垂直,AB=2AD=2,點(diǎn)E為AB的中點(diǎn).
(1)求證:BD1∥平面A1DE;
(2)求證:D1E⊥A1D;
(3)在線段AB上是否存在點(diǎn)M,使二面角D1-MC-D的大小為
π6
?若存在,求出AM的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•金華模擬)如圖所示的正方形中,將邊AB、AD各4等分,分別作AB、AD的平行線段成4×4方格網(wǎng),則從圖中取出一由網(wǎng)格線形成的矩形,恰好為正方形的概率是
3
10
3
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,正方形AA1D1D與矩形ABCD所在平面互相垂直,AB=2AD=2,點(diǎn)E為AB的中點(diǎn).
(1)求證:BD1∥平面A1DE;     
(2)求證:D1E⊥A1D;
(3)(文)求D1E與平面A1DE所成角的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案