分析 由等比中項求出a+b=1,從而a2+2b2=a2+2(1-a)2=3(a-$\frac{2}{3}$)2+$\frac{2}{3}$,由此利用a>0,b>0,a+b=1,能求出a2+2b2的取值范圍.
解答 解:∵a>0,b>0,$\sqrt{2}$是2a與2b的等比中項,
∴$\sqrt{{2}^{a}•{2}^}$=$\sqrt{{2}^{a+b}}$=$\sqrt{2}$,
∴a+b=1,∴b=1-a,
∴a2+2b2=a2+2(1-a)2=3a2-4a+2=3(a-$\frac{2}{3}$)2+$\frac{2}{3}$≥$\frac{2}{3}$.
∵a>0,b>0,a+b=1,∴0<a<1,
∴當a=$\frac{2}{3}$時,(a2+2b2)min=$\frac{2}{3}$;當a→0時,(a2+2b2)max→3×(-$\frac{2}{3}$)2+$\frac{2}{3}$=2.
∴a2+2b2的取值范圍是[$\frac{2}{3}$,2).
點評 本題考查代數(shù)式的取值范圍的求法,考查等比中項、二次函數(shù)、配方法等基礎(chǔ)知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | x2+(y-3)2=5 | B. | x2+(y+3)2=5 | C. | (x-3)2+y2=5 | D. | (x+3)2+y2=5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,$\sqrt{3}$] | B. | (1,$\frac{3}{2}$] | C. | [$\frac{3}{2}$,+∞) | D. | (3,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com