17.下列命題中,正確的是( 。
A.有兩個(gè)側(cè)面是矩形的棱柱是直棱柱
B.側(cè)面都是等腰三角形的棱錐是正棱錐
C.側(cè)面都是矩形的直四棱柱是長(zhǎng)方體
D.底面為正多邊形,且有相鄰兩個(gè)側(cè)面與底面垂直的棱柱是正棱柱

分析 根據(jù)直棱柱,正棱錐,正棱柱,長(zhǎng)方體的幾何特征,逐一分析四個(gè)結(jié)論的真假,可得答案.

解答 解:A,若側(cè)棱與底面兩條平行的兩邊垂直,此時(shí)有兩個(gè)側(cè)面均是矩形,此時(shí)的棱柱不一定是直棱柱,故錯(cuò)誤;
B,一個(gè)菱形為底面的各側(cè)面是全等的等腰三角形的四棱錐就不是正四棱錐,故錯(cuò)誤;
C,側(cè)面都是矩形的直四棱柱,底面不是矩形,不是長(zhǎng)方體,故錯(cuò)誤;
D,有相鄰兩個(gè)側(cè)面與底面垂直的棱柱是直棱柱,又由底面為正多邊形,則棱柱為正棱柱,故正確.
故選:D.

點(diǎn)評(píng) 本題考查命題真假的判斷,是基礎(chǔ)題,解題時(shí)要注意空間思維能力的培養(yǎng),要熟練掌握棱柱、正棱錐的概念,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)$f(x)=ln({1+mx})+\frac{x^2}{2}-mx$,其中m>0.
(Ⅰ)當(dāng)m=1時(shí),求證:-1<x≤0時(shí),$f(x)≤\frac{x^3}{3}$;
(Ⅱ)試討論函數(shù)y=f(x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若不等式|x+3|+|x-5|≥n2-2n的解集為R,則實(shí)數(shù)n的取值范圍是[-2,4].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知M為三角形ABC的邊BC的中點(diǎn),過線段AM的中點(diǎn)G的直線分別交線段AB,AC于點(diǎn)P,Q.若$\overrightarrow{AB}$=x$\overrightarrow{AP}$,$\overrightarrow{AC}$=y$\overrightarrow{AQ}$,則x+y的值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.在某項(xiàng)測(cè)量中,測(cè)量的結(jié)果ξ 服從正態(tài)分布N(a,δ 2)(a>0,δ>0),若ξ 在(0,a)內(nèi)取值的概率為0.3,則ξ 在(0,2a)內(nèi)取值的概率為( 。
A.0.8B.0.6C.0.4D.0.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)α的終邊經(jīng)過點(diǎn)P(3a,4a)(a≠0),則下列式子中正確的是( 。
A.tanα=$\frac{4}{3}$B.cosα=$\frac{3}{5}$C.sinα=$\frac{4}{5}$D.tanα=-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在區(qū)間[-5,5]內(nèi)隨機(jī)地取出一個(gè)數(shù)a,則恰好使1是關(guān)于x的不等式2x2+ax-a2<0的一個(gè)解的概率為( 。
A.0.3B.0.4C.0.6D.0.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在區(qū)間[0,π]上隨機(jī)取一個(gè)數(shù)x,則事件“sinx≥|cosx|”發(fā)生的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在銳角△ABC中,角A、B、C所對(duì)的邊分別為a、b、c,且2sin2$\frac{A+C}{2}$+cos2B=1.
(Ⅰ)求角B的大;
(Ⅱ)若b=2,求y=a+c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案