【題目】已知點,求:
(1)過點與原點距離為2的直線的方程;
(2)過點與原點距離最大的直線的方程,最大距離是多少?
(3)是否存在過點與原點距離為6的直線?若存在,求出方程;若不存在,請說明理由.
【答案】(1)或;(2),最大距離為;(3)不存在,見解析
【解析】
(1)設直線,根據(jù)點到直線的距離公式可得參數(shù)的值,進而可得結果;
(2)過點與原點距離最大的直線是過點且與垂直的直線,求出斜率,利用點斜式可得直線方程,再利用點到直線的距離公式求出距離即可;
(3)只需比較“過點與原點距離最大的直線中最大距離”與6的大小,即可判斷是否存在.
(1)設直線,則.化簡,得或,故直線的方程為或
(2)過點與原點距離最大的直線是過點且與垂直的直線,
由,得,所以,
由直線方程的點斜式得,即,
即直線是過點與原點距離最大的直線,最大距離為.
(3)由(2)知,過點不存在到原點距離超過的直線,所以不存在過點且到原點距離為6的直線.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:()的左、右焦點分別為,過點的直線交于,兩點,的周長為, 的離心率
(Ⅰ)求的方程;
(Ⅱ)設點,,過點作軸的垂線,試判斷直線與直線的交點是否恒在一條定直線上?若是,求該定直線的方程;否則,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求的極值;
(2)當時,討論的單調(diào)性;
(3)若對任意的,,恒有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將一枚棋子放在一個的棋盤上,記為從左、上數(shù)第行第列的小方格,求所有的四元數(shù)組,使得從出發(fā),經(jīng)過每個小方格恰一次到達(每步為將棋子從一個小方格移到與之有共同邊的另一個小方格).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線的實軸端點分別為,記雙曲線的其中一個焦點為,一個虛軸端點為,若在線段上(不含端點)有且僅有兩個不同的點,使得,則雙曲線的離心率的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】命題方程表示雙曲線;命題不等式的解集是. 為假, 為真,求的取值范圍.
【答案】
【解析】試題分析:由命題方程表示雙曲線,求出的取值范圍,由命題不等式的解集是,求出的取值范圍,由為假, 為真,得出一真一假,分兩種情況即可得出的取值范圍.
試題解析:
真
,
真 或
∴
真假
假真
∴范圍為
【題型】解答題
【結束】
18
【題目】如圖,設是圓上的動點,點是在軸上的投影, 為上一點,且.
(1)當在圓上運動時,求點的軌跡的方程;
(2)求過點且斜率為的直線被所截線段的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】四棱錐A-BCDE中,底面BCDE為矩形,側面ABC⊥底面BCDE,側面ABE⊥底面BCDE,BC=2,CD=4。
(I)證明:AB⊥面BCDE;
(II)若AD=2,求二面角C-AD-E的正弦值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com