設(shè)函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,-π<φ<π )的一個(gè)最高點(diǎn)坐標(biāo)為(
π
12
,3),其圖象與x軸的相鄰兩個(gè)交點(diǎn)的距離為
π
2

(1)求f(x)的最小正周期及解析式;
(2)若x∈[-
π
2
,
π
12
),求函數(shù)g(x)=f(x+
π
6
)的值域.
考點(diǎn):由y=Asin(ωx+φ)的部分圖象確定其解析式,正弦函數(shù)的圖象
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:(1)由已知可得:A=3,T=π=
ω
,可求得ω的值,由3sin(2×
π
12
+φ)=3,可求φ的值,從而可求f(x)的解析式;
(2)先求g(x)的解析式,由x∈[-
π
2
,
π
12
),可求2x+
3
∈[-
π
3
,
6
),從而可求得函數(shù)g(x)=f(x+
π
6
)的值域.
解答: 解:(1)由已知可得:A=3,T=π=
ω

∴ω=2
∴3sin(2×
π
12
+φ)=3,
∴φ+
π
6
=2kπ+
π
2
,k∈Z,可解得φ=2kπ+
π
3
,k∈Z,
∵-π<φ<π 
∴φ=
π
3

∴f(x)=3sin(2x+
π
3
)…5分
(2)g(x)=f(x+
π
6
)=3sin(2x+
3

∵x∈[-
π
2
,
π
12
),
∴2x+
3
∈[-
π
3
6

∴g(x)∈(-
3
3
2
,3]…12分
點(diǎn)評(píng):本題主要考查了由y=Asin(ωx+φ)的部分圖象確定其解析式,正弦函數(shù)的圖象和性質(zhì),屬于基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓
x2
a2
+
y2
b2
=1(a>b>0)與圓x2+y2=(
b
2
+c)2(c為橢圓半焦距)有四個(gè)不同交點(diǎn),則離心率的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某廠有許多形狀為直角梯形的鐵皮邊角料,如圖,上底邊長(zhǎng)為8,下底邊長(zhǎng)為24,高為20,為降低消耗,開(kāi)源節(jié)流,現(xiàn)在從這此邊角料上截取矩形鐵片(如圖中陰影部分)備用,則截取的矩形面積最大值為( 。
A、190B、180
C、170D、160

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知BC=DC=AB=AD=
2
,BD=2,平面ABD⊥平面BCD,O為BD中點(diǎn),點(diǎn)P,Q分別為線段AO,BC上的動(dòng)點(diǎn)(不含端點(diǎn)),且AP=CQ,則三棱錐P-QCO體積的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知四棱錐P=ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2,CD=1,側(cè)面PBC⊥底面ABCD,點(diǎn)F在線段AP上,且滿足PF=λPA.
(Ⅰ)當(dāng)λ=
1
2
時(shí),求證:DF∥平面PBC;
(Ⅱ)當(dāng)λ=
1
3
時(shí),求三棱錐F-PCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

當(dāng)函數(shù)y=cos(2x+
π
3
)+2取最大值時(shí),x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將a、b、c、d四個(gè)小球放入三個(gè)不同盒子,每個(gè)盒子至少放一個(gè),且a、b不在同一個(gè)盒子中的方法有
 
種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率是
2
,則該雙曲線的漸近線方程是( 。
A、y=±
1
2
x
B、y=±
2
2
x
C、y=±x
D、y=±
2
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若從區(qū)間(0,2)內(nèi)隨機(jī)取兩個(gè)數(shù),則這兩個(gè)數(shù)的和不小于3的概率為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案