過雙曲線
x2
9
-
y2
16
=1
的右焦點(diǎn)作直線L交雙曲線于AB兩點(diǎn),求線段AB的中點(diǎn)M的軌跡方程.
雙曲線
x2
9
-
y2
16
=1
的右焦點(diǎn)為(5,0),設(shè)A,B的坐標(biāo)分別為(x1,y1),(x2,y2),M(x,y),則
x21
9
-
y21
16
=1
x22
9
-
y22
16
=1
,兩式相減化簡得
y1-y2
x1-x2
=
16x
9y
,,又AB的斜率為
y
x-5
,∴
y
x-5
=
16x
9y
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•洛陽模擬)設(shè)F1,F(xiàn)2分別為雙曲線
x2
9
-
y2
16
=1
的左右焦點(diǎn),過F1引圓x2+y2=9的切線F1P交雙曲線的右支于點(diǎn)P,T為切點(diǎn),M為線段F1P的中點(diǎn),O為坐標(biāo)原點(diǎn),則|MO|-|MT|等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•藍(lán)山縣模擬)設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
5
4
,拋物線y2=20x的準(zhǔn)線過雙曲線的左焦點(diǎn),則此雙曲線的方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)P為雙曲線
x29
-y2=1
上一點(diǎn),F(xiàn)1,F(xiàn)2為它的左、右兩個焦點(diǎn),PQ是∠F1PF2的角分線.過F1作PQ的垂線,垂足為R,點(diǎn)O為坐標(biāo)原點(diǎn),則|OR|=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
9
-
y2
b2
=1(b>0)
,過其右焦點(diǎn)F作圓x2+y2=9的兩條切線,切點(diǎn)記作C,D,雙曲線的右頂點(diǎn)為E,∠CED=150°,則雙曲線的離心率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:藍(lán)山縣模擬 題型:單選題

設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為
5
4
,拋物線y2=20x的準(zhǔn)線過雙曲線的左焦點(diǎn),則此雙曲線的方程為(  )
A.
x2
4
-
y2
3
=1
B.
x2
3
-
y2
4
=1
C.
x2
16
-
y2
9
=1
D.
x2
9
-
y2
16
=1

查看答案和解析>>

同步練習(xí)冊答案