分析 過A作AE⊥BD,垂足為E,連接PE,則PE為點P到對角線BD的距離,即可得出結論.
解答 解:如圖所示,過A作AE⊥BD,垂足為E,連接PE
則PE為點P到對角線BD的距離
∵矩形ABCD,AB=2,BC=$\sqrt{3}$,可得BD=$\sqrt{7}$,
∴2×$\sqrt{3}$=$\sqrt{7}$×AE
∴AE=$\frac{2\sqrt{21}}{7}$,
又∵PA=3,PA⊥矩形ABCD
∴PE=$\sqrt{{(\frac{2\sqrt{21}}{7})}^{2}+{{3}^{2}}^{\;}}$=$\frac{5\sqrt{21}}{7}$.
故答案為:$\frac{5\sqrt{21}}{7}$.
點評 本題考查空間距離,考查學生的計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{9}$ | B. | $\frac{2}{9}$ | C. | -$\frac{1}{7}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 11000 | B. | 22000 | C. | 33000 | D. | 40000 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 25 | B. | 30 | C. | 40 | D. | 50 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com